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a b s t r a c t 

We propose a simple methodology to evaluate a large number of potential explanations for 

the negative relation between idiosyncratic volatility and subsequent stock returns (the id- 

iosyncratic volatility puzzle). Surprisingly, we find that many existing explanations explain 

less than 10% of the puzzle. On the other hand, explanations based on investors’ lottery 

preferences and market frictions show some promise in explaining the puzzle. Together, 

all existing explanations account for 29–54% of the puzzle in individual stocks and 78–84% 

of the puzzle in idiosyncratic volatility-sorted portfolios. Our methodology can be applied 

to evaluate competing explanations for other asset pricing anomalies. 
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1. Introduction 

Ang, Hodrick, Xing, and Zhang (2006) , in a highly in-

fluential paper, document a negative relation between id-

iosyncratic volatility and subsequent stock returns. To the

extent that realized idiosyncratic volatility proxies for ex-

pected idiosyncratic volatility, this result is very puzzling
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because traditional asset pricing theories either predict no

relation between expected idiosyncratic volatility and ex-

pected returns under the assumptions that markets are

complete and frictionless and investors are well-diversified,

or predict a positive relation under the assumptions that

markets are incomplete and investors face sizable frictions

and hold poorly diversified portfolios (see, e.g., Merton,

1987; Hirshleifer, 1988 ). Consequently, many papers have

been written trying to explain the puzzle, with each

paper proposing a different economic mechanism link-

ing idiosyncratic volatility to subsequent stock returns. 1
1 The long list of candidate explanations includes those based on ex- 

pected idiosyncratic skewness ( Boyer, Mitton, and Vorkink, 2010 ), coskew- 

ness ( Chabi-Yo and Yang, 2009 ), maximum daily return ( Bali, Cakici, 

and Whitelaw, 2011 ), retail trading proportion ( Han and Kumar, 2013 ), 

one-month return reversal ( Fu, 2009 ; Huang, Liu, Rhee, and Zhang, 

2009 ), illiquidity ( Bali and Cakici, 2008 ; Han and Lesmond, 2011 ), uncer- 

tainty ( Johnson, 2004 ), average variance beta ( Chen and Petkova, 2012 ), 

and earnings surprises ( Jiang, Xu, and Yao, 2009 ; Wong, 2011 ). In ad- 

dition, several papers show that the idiosyncratic volatility puzzle is 

stronger among stocks with prices of at least five dollars ( George and 

Hwang, 2011 ), low analyst coverage ( Ang, Hodrick, Xing, and Zhang, 2009 ; 

http://dx.doi.org/10.1016/j.jfineco.2016.02.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/finec
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However, to date there has been no comprehensive exam- 

ination about which explanations best explain the puzzle. 

Further complicating this matter is the fact that existing 

studies typically differ in terms of empirical methodology 

and sample construction, thus making direct comparisons 

of their results difficult. 

Motivated by these concerns, this paper provides a sim- 

ple unified framework to evaluate a large number of can- 

didate explanations of the puzzle. Most studies in this lit- 

erature typically promote a new explanation of the puzzle 

while controlling for a limited number of existing explana- 

tions. We believe that our paper provides the most com- 

prehensive examination of existing explanations to date. 

More importantly, our methodology allows us to quantify 

the fraction of the puzzle that is explained by each can- 

didate explanation, either by itself or after controlling for 

other competing explanations. 

To summarize our methodology, we start from Fama 

and MacBeth (1973) cross-sectional regressions of month 

t individual stock returns on month t − 1 idiosyncratic 

volatility. We find, as many papers do, that the estimated 

regression coefficient, which we denote as γ t , is on aver- 

age negative and highly statistically significant. Next, we 

decompose the γ t coefficient into one or more compo- 

nents, each related to a candidate explanation of the puz- 

zle (e.g., skewness), and a residual component. The ratio of 

the component related to a particular candidate explana- 

tion to the original γ t coefficient then measures the frac- 

tion of the idiosyncratic volatility puzzle that is captured 

by that explanation, and the ratio of the residual compo- 

nent to γ t measures the fraction of the puzzle left unex- 

plained by all candidate explanations considered. Our de- 

composition methodology ensures that the components re- 

lated to the candidate explanations and the residual com- 

ponent add up to γ t . This makes for intuitive interpreta- 

tion and easy comparisons when we pit existing explana- 

tions against one another. 

To guide our analysis, we break up existing explana- 

tions into three groups. The first group of explanations at- 

tributes the idiosyncratic volatility puzzle to lottery pref- 

erences of investors (they propose different proxies for 

the lottery feature of a stock, namely, skewness, coskew- 

ness, expected idiosyncratic skewness, maximum daily re- 

turn, and retail trading proportion). The second group of 

explanations appeals to various forms of market frictions 

(one-month return reversal, the Amihud illiquidity mea- 

sure, zero-return proportion, and bid-ask spread) to try 

to explain the puzzle. Explanations that do not fall natu- 

rally into the first two groups (uncertainty, average vari- 

ance beta, and earnings surprises) are then included in the 

third group. 

Using the sample of Center for Research in Security 

Prices (CRSP) common stocks from 1963–2012, we find 
George and Hwang, 2011 ), low credit ratings ( Avramov, Chordia, Jostova, 

and Philipov, 2013 ), high short-sale constraints ( Boehme, Danielsen, Ku- 

mar, and Sorescu, 2009 ; George and Hwang, 2011 ; Stambaugh, Yu, and 

Yuan, 2015 ), high leverage ( Johnson, 2004 ), low institutional ownership 

( Nagel, 2005 ), low book-to-market equity ( Barinov, 2013 ), non-NYSE list- 

ings ( Bali and Cakici, 2008 ), or for non-January months ( George and 

Hwang, 2011 ; Doran, Jiang, and Peterson, 2012 ). 
that surprisingly many existing explanations, when eval- 

uated alone, explain less than 10% of the idiosyncratic 

volatility puzzle. This is true for the explanations based on 

coskewness, illiquidity, zero-return proportion, uncertainty, 

and average variance beta. For example, coskewness and 

analyst dispersion (a proxy for uncertainty) can only ex- 

plain 1.9% and 5.3%, respectively, of the puzzle. Or consider 

the Amihud illiquidity measure. Despite being highly cor- 

related with idiosyncratic volatility, it also fails to capture 

more than 10% of the puzzle. 

On the other hand, explanations based on skewness, ex- 

pected idiosyncratic skewness, maximum daily return, re- 

tail trading proportion, one-month return reversal, bid-ask 

spread, and past earnings surprises show promise in ex- 

plaining the puzzle. In particular, one-month return re- 

versal alone can explain 33.7% of the puzzle, followed by 

bid-ask spread at 30.4%, retail trading proportion at 22.3%, 

expected idiosyncratic skewness at 14.7%, past earnings 

surprises at 10.9%, and skewness at 10.3%. For the max- 

imum daily return variable proposed by Bali, Cakici, and 

Whitelaw (2011) , it turns out that it can explain the entire 

puzzle. The problem, however, is that this variable is es- 

sentially a range-based measure of volatility and is close to 

being perfectly collinear with idiosyncratic volatility (cor- 

relation of about 0.90). It is therefore not surprising that 

an alternative proxy for volatility can capture the idiosyn- 

cratic volatility puzzle. 

Finally, we include all explanations of the puzzle (ex- 

cluding maximum daily return for reasons mentioned 

above) in a multivariate framework so that we can evalu- 

ate the marginal contribution of each explanation. We are 

also interested in the total fraction of the puzzle they can 

collectively explain. We find that after controlling for com- 

peting explanations, retail trading proportion explains only 

0.2% of the puzzle. Among the other lottery preference- 

based explanations, expected idiosyncratic skewness ex- 

plains 4–15%, coskewness explains 3–4%, and skewness ex- 

plains 2–7% of the puzzle, depending on the specification. 

Together, the four lottery preference proxies capture a good 

10–25% of the puzzle. Among the market friction-based ex- 

planations, one-month return reversal explains 1–22%, bid- 

ask spread explains 8%, the Amihud illiquidity measure ex- 

plains up to 4%, and zero-return proportion explains less 

than 2% of the puzzle. Together, the market friction prox- 

ies account for 3–24% of the puzzle. Finally, analyst dis- 

persion explains 3–6%, average variance beta explains less 

than 1%, and past earnings surprises explain 2–5% of the 

puzzle. Together, this group of explanations accounts for 5–

10% of the puzzle in the multivariate analysis. Collectively, 

all the examined explanations account for 29–54% of the 

puzzle, with explanations based on lottery preferences and 

market frictions making the biggest contributions. How- 

ever, a significant fraction (46–71%) of the puzzle remains 

unexplained. 

In robustness tests, we repeat the multivariate anal- 

ysis using subsamples of stocks with prices of at least 

five dollars, low analyst coverage, poor credit ratings, high 

short-sale constraints, high leverage, low institutional own- 

ership, low book-to-market equity, non-NYSE listings, or 

for non-January months (which have been shown by pre- 

vious studies to be associated with a stronger idiosyncratic 
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3 We have also calculated Harvey and Siddique’s (20 0 0) measure of 

coskewness by regressing daily individual stock returns on squared mar- 

ket returns. The results are similar to those based on Chabi-Yo and Yang’s 

(2009) coskewness measure. 
4 Expected idiosyncratic skewness is estimated by regressing idiosyn- 

cratic skewness (measured using the residuals from a regression of past 

five years of daily returns on the Fama-French factors) on lagged idiosyn- 

cratic skewness, idiosyncratic volatility, momentum, turnover, dummy 
volatility puzzle). We find that existing explanations

account for 39–50% of the puzzle on average in these

subsamples. In addition, we extend our analysis to

idiosyncratic volatility-sorted portfolios to control for

measurement errors at the individual stock level, and find

that existing explanations capture 78–84% of the puzzle

in the portfolio-level analysis. 2 We also examine nonlinear

relations in the idiosyncratic volatility puzzle and find that

existing explanations account for a similar fraction of the

puzzle as in the baseline linear specification. Overall, these

robustness results confirm that while lottery preferences

and market frictions explain a sizable part of the idiosyn-

cratic volatility puzzle, a significant portion of the puzzle

remains unexplained. In the final test, we apply our de-

composition methodology to other anomalies to illustrate

that our methodology can be used to evaluate candidate

explanations for other puzzles in empirical asset pricing. 

The rest of the paper is organized as follows. Section 2

describes the data and methodology and gives an overview

of the various explanations that have been proposed for

the idiosyncratic volatility puzzle. Section 3 evaluates the

explanations one at a time, and Section 4 investigates mul-

tiple explanations at the same time. Section 5 considers a

number of robustness tests, and Section 6 concludes. 

2. Data and methodology 

2.1. Stock return and idiosyncratic volatility data 

We start our sample from the standard CRSP common

stock (share codes of 10 or 11) universe from July 1963 to

December 2012. Monthly returns are adjusted for delisting

following Shumway (1997) . To be included in the analy-

sis, we require a firm to have non-missing size and non-

negative book-to-market equity (B/M), where size is the

most recent June-end market cap and B/M is computed

according to Fama and French (2006) . We apply a price

screen of one dollar to remove penny stocks but also ad-

just this screen in subsample robustness tests. 

We compute idiosyncratic volatility ( IVOL ) following

Ang, Hodrick, Xing, and Zhang (2006) as the standard de-

viation of the residuals from a regression of daily stock re-

turns in month t − 1 on the Fama and French (1993) fac-

tors. We require at least ten daily returns to compute IVOL ,

although our results are unaffected if we require at least

15 daily returns or do not impose any minimum observa-

tion restriction. The estimates for IVOL start in July 1963,

and month t − 1 estimates of IVOL are matched to month

t returns from August 1963 to December 2012. 

2.2. Candidate variables related to lottery preferences of 

investors 

A battery of candidate variables is constructed as poten-

tial explanations of the idiosyncratic volatility puzzle. The
2 Although the total explained fraction at the portfolio level is signifi- 

cantly higher than that at the individual stock level, our simulation results 

suggest that it might overstate the true fraction of the puzzle explained 

by the candidate variables if the candidate variables are already measured 

precisely at the individual stock level. See Section 5.1 for details. 
first group of explanations concerns the lottery preferences

of investors. Barberis and Huang (2008) argue that un-

der cumulative prospect theory, investors overweigh small

chances of large gains (hence the lottery preferences). As a

result, they prefer positively skewed stocks, causing them

to be overpriced, which would then earn low subsequent

returns. Several papers attribute the idiosyncratic volatil-

ity puzzle to idiosyncratic volatility being correlated with

skewness. We measure skewness (denoted Skew ) using

the daily returns in month t − 1. In addition to the raw

skewness measure, we also compute alternative measures

of skewness. Chabi-Yo and Yang (2009) develop a model

showing that the effect of idiosyncratic volatility on stock

returns is related to a stock’s coskewness with the market

portfolio. We measure coskewness ( Coskew ) as the regres-

sion coefficient of squared daily individual stock returns on

market returns. 3 

Boyer, Mitton, and Vorkink (2010) use the forecasts

from a regression model to proxy for expected idiosyn-

cratic skewness [ E(Idioskew) ] and show that it helps to

explain the idiosyncratic volatility puzzle. 4 We obtain the

E(Idioskew) estimates from the authors for 1988–2005. We

then extend their sample period by constructing the mea-

sure for 1968–1987 (turnover is dropped from the forecast

model for this early period due to lack of turnover data for

Nasdaq stocks) and 2006–2012. 

We also consider the maximum daily return ( Maxret )

and the retail trading proportion ( RTP ) of a stock, which

are proposed by Bali, Cakici, and Whitelaw (2011) and

Han and Kumar (2013) , respectively, as indicators for

stocks that are preferred by lottery-seeking retail investors.

Maxret is measured using daily returns in month t − 1. RTP

is measured as the fraction of the dollar trading volume in

month t − 1 that comes from trades less than or equal to

$5,0 0 0, using the Institute for the Study of Security Mar-

kets (ISSM) database for 1983–1992 and the Trades and

Quotes (TAQ) database for 1993–20 0 0. Following Han and

Kumar (2013) , we exclude the post-decimalization period

due to greater incidence of order-splitting by institutions. 

2.3. Candidate variables related to market frictions 

The second group of explanations attributes the id-

iosyncratic volatility puzzle to market frictions. Fu (2009)

and Huang, Liu, Rhee, and, Zhang (2009) argue that once

we control for the one-month return reversal effect, which
variables for small firms and medium-sized firms, two-digit Standard In- 

dustrial Classification (SIC) dummies, and a Nasdaq dummy. Boyer, Mit- 

ton, and Vorkink (2010) show that the coefficient on IVOL becomes 

insignificant after controlling for E(Idioskew) in Fama-MacBeth regres- 

sions using 100 E(Idioskew) -sorted portfolios. However, in their individual 

stock-level Fama-MacBeth regressions, the IVOL coefficient remains signif- 

icant after controlling for E(Idioskew) . 
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6 DGTW-adjusted return is the raw return minus the return on a size- 

B/M-momentum-matched benchmark portfolio. At the end of June of each 

year, stocks are first sorted into quintiles based on their market cap us- 
is likely driven by microstructure biases, the negative id- 

iosyncratic volatility-return relation is no longer signifi- 

cant. We measure the one-month reversal effect using the 

month t − 1 return ( Lagret ). 

Illiquidity can also affect the idiosyncratic volatility- 

return relation. We examine three measures of illiquid- 

ity. The Amihud (2002) measure ( Amihud ) is computed 

as the month t − 1 average of daily absolute return 

divided by daily dollar trading volume. We also follow 

Han and Lesmond (2011) and use the fraction of trading 

days in month t − 1 with a zero return ( Zeroret ) as an- 

other proxy for illiquidity. The third proxy is the bid-ask 

spread ( Spread ), which is the average daily percentage bid- 

ask spread (ask minus bid divided by the average of bid 

and ask) in month t − 1. The daily percentage spreads 

are computed based on the National Best Bid and Offer 

(NBBO) quotes at every point in time during a trading 

day (weighted by the average depth of the quotes), using 

data from ISSM and TAQ for 1984–2012. Han and Lesmond 

(2011) argue that the bid-ask bounce drives much of the 

idiosyncratic volatility puzzle. 

2.4. Candidate variables related to other explanations 

The third group of explanations consists of those that 

do not fall naturally into the lottery preference or mar- 

ket friction categories. First, idiosyncratic volatility could 

proxy for the fundamental uncertainty surrounding a stock. 

Johnson (2004) argues that uncertainty is negatively re- 

lated to future stock returns because stock is a call option 

on a levered firm’s underlying assets. We measure uncer- 

tainty using analyst dispersion ( Dispersion ), which is the 

standard deviation of analysts’ FY1 forecasts scaled by the 

absolute value of the mean consensus forecast for month t 

− 1. Analysts’ forecasts are obtained from the Institutional 

Brokers’ Estimate System (I/B/E/S) Summary Estimates un- 

adjusted file. 

Chen and Petkova (2012) argue that a stock’s exposure 

to the average variance component of the market vari- 

ance explains the idiosyncratic volatility puzzle. We repli- 

cate their measure of average variance beta ( AvgVar β) for 

the sample period of 1968–2012 and include it in the 

analysis. 5 

We also examine SUE (the most recently announced 

standardized unexpected earnings as of the end of month t 

− 1). Jiang, Xu, and Yao (2009) and Wong (2011) show that 

high idiosyncratic volatility stocks suffer negative earnings 

surprises, which could explain the subsequent poor return 

performance of those stocks. SUE is measured as the Com- 

pustat quarterly earnings before extraordinary items (item 

IBQ) minus the earnings four quarters ago, divided by the 

standard deviation of the difference over the last eight 

quarters. The announcement date of earnings is from item 

RDQ. 
5 For each month, average variance beta is estimated by regressing 

a stock’s returns over the past 60 months (24-month minimum) on 

changes in the average variance (AV) of the market portfolio, controlling 

for changes in the average correlation (AC) of the market portfolio and 

the Fama and French (1993) factors. AV is the average of the individual 

stock daily return variances. AC is the average of the pairwise correlations 

between stocks. 
2.5. Decomposition methodology 

Our decomposition methodology is based on individ- 

ual stock-level Fama-MacBeth cross-sectional regressions, 

which are commonly used in the literature to study the 

relation between idiosyncratic volatility and returns. For 

each month t , we regress the cross-section of individual 

stock characteristic-adjusted returns on their month t − 1 

IVOL as follows: 

R it = αt + γt IV O L it−1 + ε it . (1) 

R it is stock i ’s characteristic-adjusted return, computed 

following Daniel, Grinblatt, Titman, and Wermers (1997) 

(hereafter DGTW). 6 Our results are robust to using raw re- 

turns instead of DGTW-adjusted returns. For our baseline 

sample, the average γ t coefficient ( ×100 and reported in 

percent) equals –16.955% with a t -statistic of –8.19 (hence 

the idiosyncratic volatility puzzle). 

Next, we regress IV O L it−1 on a candidate explanatory 

variable ( Cand id at e it−1 ) : 

IV O L it−1 = a t−1 + δt−1 Cand id at e it−1 + μit−1 . (2) 

This regression allows us to assess the relation be- 

tween idiosyncratic volatility and the candidate variable 

as any candidate variable that can potentially explain 

the puzzle must be correlated with idiosyncratic volatil- 

ity. 7 We then use the regression coefficient estimates 

to decompose IV O L it−1 into two orthogonal components: 

δt−1 Cand id at e it−1 is the component of IV O L it−1 that is re- 

lated to the candidate variable and ( a t−1 + μit−1 ) is the 

residual component that is unrelated to the candidate vari- 

able. 

The final step is to use the linearity of covariances to 

decompose the estimated γ t coefficient from Eq. (1) : 

γt = 

Cov [ R it , IV O L it−1 ] 

Var [ IV O L it−1 ] 

= 

Cov [ R it , ( δt−1 Cand id at e it−1 + a t−1 + μit−1 ) ] 

Var [ IV O L it−1 ] 

= 

Cov [ R it , δt−1 Cand id at e it−1 ] 

Var [ IV O L it−1 ] 

+ 

Cov [ R it , ( a t−1 + μit−1 ) ] 

Var [ IV O L it−1 ] 

= γ C 
t + γ R 

t . (3) 

γ C 
t / γt then measures the fraction of the idiosyncratic 

volatility-return relation (the idiosyncratic volatility puz- 

zle) explained by the candidate variable, and γ R 
t / γt mea- 

sures the fraction of the puzzle left unexplained by the 
ing NYSE breakpoints. Then, within each size quintile, stocks are sorted 

into quintiles according to their B/M ratios from the previous year. In the 

last step, stocks within each double-sorted size-B/M portfolio are further 

sorted into quintiles every month based on their returns over the prior 12 

months skipping the most recent month. Equal-weighted monthly returns 

are computed for each characteristic-matched benchmark portfolio. 
7 However, as we will demonstrate later, a high correlation in and of 

itself does not guarantee that the candidate variable will explain a large 

fraction of the puzzle. 
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8 We also consider the general case of multiple candidate variables in 

Appendix A . 
candidate variable. While the means and variances of the

two fractions are unattainable in closed-form, we can use

the standard multivariate delta method based on Taylor se-

ries expansions to find approximations using the means,

variances, and covariances of γ C 
t , γ R 

t , and γ t (see, e.g.,

Casella and Berger, 2001 ): 

E 

(
γ C 

t 

γt 

)
≈

E 

(
γ C 

t 

)
E ( γt ) 

, E 

(
γ R 

t 

γt 

)
≈

E 

(
γ R 

t 

)
E ( γt ) 

, (4)

Var 

(
γ C 

t 

γt 

)
≈

(
E(γ C 

t ) 

E( γt ) 

)2 

×
( 

Var 
(
γ C 

t 

)(
E 

(
γ C 

t 

))2 
+ 

Var ( γt ) 

( E ( γt ) ) 
2 

− 2 

Cov 
(
γ C 

t , γt 

)
E 

(
γ C 

t 

)
E ( γt ) 

) 

, (5)

and 

Var 

(
γ R 

t 

γt 

)
≈

(
E(γ R 

t ) 

E( γt ) 

)2 

×
( 

Var 
(
γ R 

t 

)(
E 

(
γ R 

t 

))2 
+ 

Var ( γt ) 

( E ( γt ) ) 
2 

− 2 

Cov 
(
γ R 

t , γt 

)
E 

(
γ R 

t 

)
E ( γt ) 

) 

. (6)

The corresponding estimated means and variances of the

fractions are based on the respective time series of γ C 
t , γ R 

t ,

and γ t estimates (over T months): 

ˆ E 

(
γ C 

t 

γt 

)
≈ γ C 

t 

γt 
, ˆ E 

(
γ R 

t 

γt 

)
≈ γ R 

t 

γt 
, (7)

̂ Var 

(
γ C 

t 

γt 

)
≈ 1 

T 

(
γ C 

t 

γt 

)2 
( 

s 2 
γ C 

t 

γ C 
t 

2 
+ 

s 2 γt 

γt 
2 

− 2 

ˆ ργ C 
t , γt 

s γ C 
t 

s γt 

γ C 
t γt 

) 

, 

(8)

and 

̂ Var 

(
γ R 

t 

γt 

)
≈ 1 

T 

(
γ R 

t 

γt 

)2 
( 

s 2 
γ R 

t 

γ R 
t 

2 
+ 

s 2 γt 

γt 
2 

− 2 

ˆ ργ R 
t , γt 

s γ R 
t 

s γt 

γ R 
t γt 

) 

. 

(9)

Our decomposition methodology is different from the

conventional approach to evaluate a candidate variable,

which usually involves including the candidate variable

as a control in the regression of returns on idiosyncratic

volatility: 

R it = ˜ αt + ˜ γ R 
t IV O L it−1 + ˜ γ C 

t Cand id at e it−1 + ˜ ε it . (10)

In this regression, if ˜ γ R 
t is zero, researchers typically con-

clude that the candidate variable explains the idiosyncratic

volatility puzzle. If ˜ γ R 
t is not zero, one might consider us-

ing the difference between ˜ γ R 
t and the original IVOL coeffi-

cient γ t from Eq. (1) to measure the fraction of the puzzle

that is explained by the candidate variable. This is prob-

lematic because the two coefficients are not directly com-

parable due to the fact that ˜ γ R 
t is determined by the vari-

ation in IVOL that is independent of the candidate variable

whereas γ t is determined by the variation in IVOL itself.
The important advantage of our decomposition methodol-

ogy is that by requiring both γ C 
t and γ R 

t in Eq. (3) to be de-

termined by the variation in IVOL , we ensure that they add

up exactly to the original γ t coefficient. This allows us to

make a direct statement about the fraction of the idiosyn-

cratic volatility puzzle that is explained by the candidate

variable. In addition, unlike the conventional approach, our

methodology can easily accommodate multiple candidate

variables at the same time so we can objectively quantify

the marginal contribution of each candidate variable in a

horse race. 

It is important to point out that a candidate variable

that is highly correlated with idiosyncratic volatility may

not necessarily explain a large fraction of the puzzle in our

decomposition methodology. This is because the part of id-

iosyncratic volatility that is related to the candidate vari-

able may not be the part that is responsible for the neg-

ative relation between idiosyncratic volatility and returns.

In Appendix A , we show that γ C 
t from our decomposition

methodology in Eq. (3) is related to the coefficients from

the conventional approach in Eq. (10) in the following way:

γ C 
t = ( 

˜ γ C 
t 

δt−1 
+ ˜ γ R 

t ) ×
Var [ δt−1 Cand id at e it−1 ] 

Var [ IVO L it−1 ] 
. 8 This suggests that

γ C 
t not only depends on the fraction of the variation of id-

iosyncratic volatility explained by the candidate variable

( 
Var [ δt−1 Cand id at e it−1 ] 

Var [ IVO L it−1 ] 
) , but also on the component of the

candidate variable that is uncorrelated with idiosyncratic

volatility but correlated with future returns as captured

by ˜ γ C 
t in Eq. (10) . Consequently, a candidate variable that

is highly positively correlated with idiosyncratic volatility

could actually have a small or even negative contribution

to the puzzle if the component of the candidate variable

that is uncorrelated with idiosyncratic volatility predicts

returns positively. Empirically, we show in Section 3 that

this is indeed the case for a number of candidate variables

we investigate. The bottom line is that our decomposi-

tion methodology is not simply picking up candidate vari-

ables based solely on their correlations with idiosyncratic

volatility. Rather, we attribute a high explanatory power to

a variable for capturing a significant fraction of the nega-

tive relation between idiosyncratic volatility and returns. 

3. Evaluating candidate explanations one at a time 

3.1. Sample descriptive statistics 

Panel A of Table 1 reports the descriptive statistics of

our sample. There are more than two million firm-month

observations in our baseline sample. The average raw re-

turn is 1.1% per month with a standard deviation of 15.7%.

The average DGTW-adjusted return is –0.1% per month

with a standard deviation of 14.2%. The average IVOL es-

timated using daily returns is 2.6%. The average market

beta (estimated with three years of past monthly returns),

size, B/M ratio, and momentum (buy-and-hold return from

month t − 12 to t − 2) are 1.136, $1.4 41 billion, 0.94 4, and

16.7%, respectively. 
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Table 1 

Sample descriptive statistics. 

Sample statistics from 1963 to 2012 are reported. Panel A shows the distribution of firm characteristics and Panel B shows the time-series averages of 

cross-sectional correlations. The sample consists of all CRSP common stocks with share prices of at least $1 at the end of the previous month. N is the 

total number of firm-month observations. Return is the raw CRSP monthly return adjusted for delisting according to Shumway (1997) . DGTW-adjusted 

return is the raw return minus the return on a size-B/M-momentum-matched benchmark portfolio. Idiosyncratic volatility ( IVOL ) is the standard deviation 

of residuals from a regression of daily stock returns in month t −1 on the Fama and French (1993) factors. Beta is the regression coefficient of the past 

three years of monthly returns on market returns. Size and B/M are measured and aligned as in Fama and French (2006) , and Momentum is the buy-and- 

hold month t −12 to t −2 return. Skew is the month t −1 skewness of raw daily returns. Coskew is the coskewness measure in Chabi-Yo and Yang (2009) . 

E(Idioskew) is the expected idiosyncratic skewness measure in Boyer, Mitton, and Vorkink (2010) . Maxret is the maximum daily return in month t −1. RTP 

is the retail trading proportion computed from ISSM and TAQ. Lagret is the month t −1 return. Amihud is the illiquidity measure in Amihud (2002) . Zeroret 

is the fraction of trading days in month t −1 with a zero return. Spread is the average daily bid-ask spread in month t −1 from ISSM and TAQ. Dispersion is 

the dispersion in analysts’ FY1 forecasts. AvgVar β is a stock’s exposure to the average variance component of the market variance as in Chen and Petkova 

(2012) . SUE is the most recent standardized unexpected earnings. 

Panel A: Distribution of firm characteristics 

Variable Mean Stdev N 1st Pctl 10th Pctl 25th Pctl 50th Pctl 75th Pctl 90th Pctl 99th Pctl 

Return 0.011 0.157 2123249 −0.360 −0.143 −0.063 0.0 0 0 0.071 0.167 0.500 

DGTW-adj ret −0.001 0.142 2123249 −0.335 −0.137 −0.067 −0.008 0.053 0.134 0.441 

IVOL 0.026 0.022 2124838 0.003 0.009 0.013 0.021 0.033 0.050 0.106 

Size ($m) 1441.3 9373.4 2124838 2.0 9.0 26.1 102.1 483.0 1927.2 24306.8 

B/M 0.944 1.521 2124838 0.047 0.202 0.381 0.686 1.153 1.827 4.729 

Momentum 0.167 0.709 2124838 −0.747 −0.408 −0.176 0.068 0.347 0.742 2.546 

Beta 1.136 0.921 2096757 −0.761 0.202 0.583 1.041 1.566 2.186 4.014 

Lottery preference variables 

Skew 0.258 1.042 2114792 −2.848 −0.801 −0.255 0.216 0.753 1.420 3.335 

Coskew 0.006 0.879 2124838 −0.430 −0.061 −0.016 0.001 0.021 0.075 0.504 

E(Idioskew) 0.830 0.682 1527963 −0.402 0.119 0.401 0.756 1.169 1.595 2.748 

Maxret 0.071 0.077 2124838 0.0 0 0 0.020 0.031 0.052 0.086 0.139 0.333 

RTP 0.158 0.206 816019 0.0 0 0 0.009 0.023 0.070 0.209 0.453 1.0 0 0 

Market friction variables 

Lagret 0.016 0.166 2124782 −0.342 −0.139 −0.061 0.0 0 0 0.074 0.170 0.537 

Amihud 6.352 73.593 1974351 0.0 0 0 0.001 0.012 0.155 1.534 8.917 106.32 

Zeroret 0.208 0.213 2124838 0.0 0 0 0.0 0 0 0.048 0.143 0.300 0.500 0.913 

Spread 0.032 0.049 1245367 0.0 0 0 0.002 0.006 0.015 0.039 0.077 0.226 

Other variables 

Dispersion 0.199 1.237 826678 0.0 0 0 0.009 0.019 0.043 0.111 0.306 2.667 

AvgVar β 0.228 7.352 1769692 −19.618 −5.912 −2.282 0.033 2.457 6.575 22.345 

SUE 0.169 17.177 1719754 −7.598 −1.595 −0.461 0.186 1.051 2.347 6.344 

Panel B: Time-series averages of cross-sectional correlations between firm characteristics 

Variable DGTW- IVOL Beta Size BM Mom Skew Coskw Eiskw Maxret RTP Lagret Amihud Zeroret Spread Disp AV β

adj ret 

IVOL −0.027 1 

Beta −0.005 0.179 1 

Size 0.001 −0.138 −0.044 1 

B/M 0.0 0 0 0.043 −0.089 −0.065 1 

Momentum 0.006 −0.086 −0.011 0.004 0.027 1 

Skew −0.012 0.193 0.035 −0.022 0.016 −0.020 1 

Coskew −0.005 0.052 0.016 −0.003 0.001 −0.012 0.101 1 

E(Idioskew) −0.010 0.408 0.064 −0.174 0.184 −0.165 0.064 0.013 1 

Maxret −0.033 0.882 0.154 −0.101 0.031 −0.067 0.476 0.105 0.316 1 

RTP −0.017 0.472 −0.062 −0.172 0.166 −0.201 0.033 0.010 0.580 0.354 1 

Lagret −0.045 0.191 −0.007 −0.003 0.025 0.001 0.352 0.080 −0.017 0.389 −0.058 1 

Amihud 0.002 0.308 −0.029 −0.049 0.127 −0.091 0.009 0.003 0.254 0.222 0.402 −0.013 1 

Zeroret 0.004 0.020 −0.146 −0.153 0.164 −0.133 −0.003 −0.007 0.402 0.011 0.461 −0.047 0.213 1 

Spread −0.011 0.494 −0.101 −0.157 0.182 −0.165 0.034 0.009 0.524 0.358 0.700 −0.014 0.500 0.463 1 

Dispersion −0.010 0.123 0.064 −0.035 0.061 −0.081 0.015 0.008 0.113 0.097 0.133 −0.021 0.049 0.062 0.104 1 

AvgVar β −0.003 0.033 0.087 −0.003 −0.004 0.003 0.006 0.008 0.006 0.028 0.036 0.001 0.008 −0.011 0.016 0.003 1 

SUE 0.023 −0.099 −0.015 0.045 −0.062 0.203 0.008 −0.004 −0.107 −0.062 −0.084 0.058 −0.045 −0.083 −0.064 −0.070 0.0 0 0 
The rest of Panel A reports the descriptive statistics for 

the three groups (lottery preferences, market frictions, and 

others) of candidate variables. Among the lottery prefer- 

ence variables, the average Skew is 0.258, suggesting that 

stock returns are on average positively skewed. The aver- 

age Maxret is 7.1%. The average RTP is 15.8%, indicating that 
retail investors typically do not account for a large frac- 

tion of the trading volume of a stock. Among the mar- 

ket friction variables, Lagret has an average value of 1.6% 

(higher than the month t average return of 1.1% due to the 

one-dollar price screen we impose at the end of month 

t − 1). The average value of Zeroret , an illiquidity proxy, 
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is 20.8%, which indicates that on average about one-fifth

of the trading days in a month have a zero return. The

average Spread is 3.2%. Among the other candidate vari-

ables, Dispersion, AvgVar β , and SUE have average values of

19.9%, 0.228 , and 16.9%, respectively. 

Panel B of Table 1 reports the time-series averages

of cross-sectional correlations. The average correlation

between month t − 1 IVOL and month t DGTW-adjusted

returns is –0.027, which is consistent with the negative

idiosyncratic volatility-return relation documented in the

literature. The second column of Panel B shows that IVOL

is positively correlated with Skew, Coskew, E(Idioskew),

Maxret, RTP, Lagret, Amihud, Zeroret, Spread, Dispersion ,

and AvgVar β , and negatively correlated with SUE . These

correlations are generally consistent with the various

explanations that have been proposed for the idiosyncratic

volatility puzzle. For example, the average correlation be-

tween IVOL and Skew is 0.193, which is consistent with the

lottery preference explanation that IVOL predicts returns

because of its correlation with skewness. Or consider SUE .

The average correlation between IVOL and SUE is –0.099.

This correlation is in line with the conclusion in Jiang, Xu,

and Yao (2009) and Wong (2011) that the poor earnings

performance of high idiosyncratic volatility stocks is re-

sponsible for their low returns. Among all the candidate

variables, the one that has the highest correlation with

IVOL is Maxret (average correlation of 0.882), suggesting

that collinearity is a concern for this variable. 9 

3.2. The idiosyncratic volatility puzzle 

To set the stage, Table 2 reports the results of monthly

Fama-MacBeth cross-sectional regressions of month t indi-

vidual stock DGTW-adjusted returns on month t − 1 IVOL

and different candidate variables. 10 We require at least 50

observations per month so that we have a reasonable sam-

ple size for each cross-sectional regression. 

Model 1 regresses DGTW-adjusted returns on IVOL

alone. The sample period is August 1963 to December 2012

with an average of 3,581 stocks per month. The average

coefficient on IVOL is –16.955% (multiplied by 100 and

reported in percent, t = –8.19) and its magnitude and sta-

tistical significance are in line with past findings in the lit-

erature. Models 2–6 add the lottery preference-based can-

didate variables one at a time to Model 1. For each model,

the number of observations and sample period may differ

from those of Model 1 due to data availability of the candi-

date variable examined. The results from Models 2–6 show

that in all but one case, the coefficient on IVOL remains
9 The high correlation between the two variables is not surprising given 

that price range has been used as a volatility estimator in the literature. 

See, for example, Alizadeh, Brandt, and Diebold (2002) and Brandt and 

Diebold (2006) . This makes Maxret a less satisfactory economic explana- 

tion for the puzzle since using Maxret as a candidate variable is akin to 

explaining the idiosyncratic volatility puzzle with another volatility proxy. 
10 Asparouhova, Bessembinder, and Kalcheva (2013) show that mi- 

crostructure noise introduces an upward bias to stock returns, which 

could potentially bias the inferences from Fama-MacBeth regressions. In 

unreported tests, we follow their paper by using (one plus) month t − 1 

return as the weight in the Fama-MacBeth regressions and find that our 

results are robust to this noise-adjustment procedure. 

 

 

 

 

 

 

 

 

 

 

 

negative and statistically significant. Only when Maxret is

included in the regression does the coefficient on IVOL be-

come positive, consistent with the results in Bali, Cakici,

and Whitelaw (2011) . 

Models 7–10 and 11–13 in Table 2 investigate the can-

didate variables related to market frictions and other ex-

planations, respectively. The results show that the coeffi-

cient on IVOL is always negative and statistically signifi-

cant, irrespective of the candidate variable included in the

regressions. 

The main takeaway from Table 2 is that the negative id-

iosyncratic volatility-return relation remains significant af-

ter controlling for almost all of the candidate explanatory

variables (except for Maxret ). But the question remains:

Even if these candidate variables cannot completely ex-

plain away the idiosyncratic volatility puzzle, can they at

least explain part of it? If so, what fraction of the puz-

zle can these candidate variables capture? We investigate

this next using the decomposition methodology described

in Section 2.5 . 

3.3. Candidate variables related to lottery preferences of 

investors 

We first examine the candidate variables related to lot-

tery preferences of investors. We start off with a detailed

account of the decomposition analysis using Skew in Panel

A of Table 3 . Stage 1 regresses month t DGTW-adjusted re-

turns on month t − 1 IVOL and the average coefficient on

IVOL is –17.401% with a t -statistic of –8.47. Note that this

regression excludes firm-month observations with missing

Skew to ensure that the sample is kept constant when we

later add Skew to the analysis. 

In Stage 2, we add Skew to the cross-sectional regres-

sions following the conventional approach in Eq. (10) (this

is identical to Model 2 in Table 2 ). The average coeffi-

cient on Skew is –0.099% with a t -statistic of –5.53, which

is consistent with Barberis and Huang’s (2008) prediction

that investors overprice positively skewed stocks and as

a result the future returns of those stocks are low. Con-

trolling for Skew , however, we see that the average coef-

ficient on IVOL is still negative and significant (–16.145%,

t = –7.67), which suggests that Skew cannot fully explain

the idiosyncratic volatility puzzle. 

We now use our decomposition methodology to as-

sess specifically what fraction of the puzzle is captured by

Skew . In Stage 3, we regress IVOL on Skew each month.

The average coefficient on Skew is 0.367% with a t -statistic

of 34.31, suggesting that part of IVOL is indeed related to

the skewness of a stock (a unit change in Skew is associ-

ated with a 0.367% change in IVOL ). However, the adjusted

R -squared shows that only 4.3% of the variation in IVOL

can be explained by Skew . The Stage 3 estimated coeffi-

cients allow us to separate IVOL each month into two com-

ponents: the first one ( δt−1 Ske w it−1 ) is the component of

IVOL that is related to Skew and the second ( a t−1 + μit−1 )

is the residual component that is unrelated to Skew . 

In Stage 4, we follow Eq. (3) and use the above two

components of IVOL to decompose the Stage 1 IVOL coeffi-

cient ( γ t ) into a component that is related to Skew ( γ Skew 

t )

and a residual component ( γ R 
t ). The time-series averages
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Table 2 

The negative relation between idiosyncratic volatility and returns. 

Firm-level Fama-MacBeth cross-sectional regressions are estimated each month from August 1963 to December 2012. The dependent variable is DGTW-adjusted returns. Stocks with prices less than $1 at the 

end of the previous month are excluded. Time-series averages of the coefficients ( ×100) and the associated time-series t -statistics (in parentheses) are reported. Idiosyncratic volatility ( IVOL ) is the standard 

deviation of residuals from a regression of daily stock returns in month t −1 on the Fama and French (1993) factors. Skew is the month t −1 skewness of raw daily returns. Coskew is the coskewness measure in 

Chabi-Yo and Yang (2009) . E(Idioskew) is the expected idiosyncratic skewness measure in Boyer, Mitton, and Vorkink (2010) . Maxret is the maximum daily return in month t −1. RTP is the retail trading proportion 

computed from ISSM and TAQ. Lagret is the month t −1 return. Amihud is the illiquidity measure in Amihud (2002) . Zeroret is the fraction of trading days in month t −1 with a zero return. Spread is the average 

daily bid-ask spread in month t −1 from ISSM and TAQ. Dispersion is the dispersion in analysts’ FY1 forecasts. AvgVar β is a stock’s exposure to the average variance component of the market variance as in Chen 

and Petkova (2012) . SUE is the most recent standardized unexpected earnings. ∗ , ∗∗ , and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% levels, respectively. 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 

Intercept 0.337 ∗∗∗ 0.355 ∗∗∗ 0.339 ∗∗∗ 0.456 ∗∗∗ 0.270 ∗∗∗ 0.433 ∗∗∗ 0.244 ∗∗∗ 0.396 ∗∗∗ 0.345 ∗∗∗ 0.379 ∗∗∗ 0.249 ∗∗∗ 0.349 ∗∗∗ 0.285 ∗∗∗

(6.11) (6.47) (6.06) (7.79) (4.74) (3.88) (4.27) (7.20) (6.66) (4.98) (2.95) (6.07) (4.75) 

IVOL −16.955 ∗∗∗ −16.145 ∗∗∗ −17.349 ∗∗∗ −20.882 ∗∗∗ 10.740 ∗∗∗ −23.129 ∗∗∗ −10.831 ∗∗∗ −21.220 ∗∗∗ −17.024 ∗∗∗ −21.679 ∗∗∗ −13.803 ∗∗∗ −17.063 ∗∗∗ −15.669 ∗∗∗

( −8.19) ( −7.67) ( −8.28) ( −9.56) (2.85) ( −6.67) ( −4.88) ( −9.38) ( −8.30) ( −7.23) ( −3.70) ( −8.29) ( −7.01) 

Skew −0.099 ∗∗∗

( −5.53) 

Coskew −0.380 ∗∗

( −2.49) 

E(Idioskew) 0.022 

(0.45) 

Maxret −9.352 ∗∗∗

( −10.20) 

RTP −0.021 

( −0.08) 

Lagret −4.467 ∗∗∗

( −13.72) 

Amihud 0.035 ∗∗∗

(4.63) 

Zeroret 0.168 

(0.62) 

Spread 2.064 

(1.26) 

Dispersion −0.055 

( −1.08) 

AvgVar β −0.006 

( −1.08) 

SUE 0.108 ∗∗∗

(17.21) 

Avg adj R 2 0.004 0.005 0.006 0.005 0.006 0.006 0.011 0.007 0.007 0.007 0.007 0.005 0.005 

Avg # firms/mth 3580.5 3563.7 3580.5 2870.8 3580.5 3776.8 3580.4 3327.3 3580.5 3716.6 2258.1 3232.1 3472.3 

Startdate 196308 196308 196308 196808 196308 198302 196308 196308 196308 198402 198207 196808 197110 

Enddate 201212 201212 201212 201212 201212 200101 201212 201212 201212 201212 201212 201212 201212 
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Table 3 

Decomposing the idiosyncratic volatility puzzle: univariate analysis. 

Using firm-level Fama-MacBeth cross-sectional regressions, the negative relation between idiosyncratic volatility ( IVOL ) and DGTW-adjusted returns is decomposed into a component that is related to a 

candidate variable and a residual component. Stage 1 regresses month t returns on month t − 1 IVOL ( R it = αt + γt IV O L it−1 + ε it ) . Stage 2 adds a candidate variable ( Cand id at e it−1 ) to the regression. Stage 3 

regresses IVOL on the candidate variable ( IV O L it−1 = a t−1 + δt−1 Cand id at e it−1 + μit−1 ) to decompose IV O L it−1 into two orthogonal components: δt−1 Cand id at e it−1 and ( a t−1 + μit−1 ) . In Stage 4, the γ t coefficient 

from Stage 1 is decomposed as: γt = 

Cov [ R it ,IVO L it−1 ] 

Var [ IVO L it−1 ] 
= 

Cov [ R it , δt−1 Candidat e it−1 ] 

Var [ IVO L it−1 ] 
+ 

Cov [ R it , ( a t−1 + μit−1 ) ] 
Var [ IVO L it−1 ] 

= γ C 
t + γ R 

t . The time-series average of γ C 
t divided by the time-series average of γ t then measures the fraction of the 

negative idiosyncratic volatility-return relation explained by the candidate variable, and the average γ R 
t divided by the average γ t measures the fraction of the relation left unexplained by the candidate variable, 

with the standard errors of the fractions being determined using the multivariate delta method. Stocks with prices less than $1 at the end of the previous month are excluded from the analysis. IVOL is the 

standard deviation of residuals from a regression of daily stock returns in month t − 1 on the Fama and French (1993) factors. Panel A examines lottery preference-based candidate variables, where Skew is the 

month t − 1 skewness of raw daily returns, Coskew is the coskewness measure in Chabi-Yo and Yang (2009) , E(Idioskew) is the expected idiosyncratic skewness measure in Boyer, Mitton, and Vorkink (2010) , 

Maxret is the maximum daily return in month t − 1, and RTP is the retail trading proportion computed from ISSM and TAQ. Panel B examines market friction-based candidate variables, where Lagret is the month 

t − 1 return, Amihud is the illiquidity measure in Amihud (2002) , Zeroret is the fraction of trading days in month t − 1 with a zero return, and Spread is the average daily bid-ask spread in month t − 1 from ISSM 

and TAQ. Panel B also examines all the other candidate variables, where Dispersion is the dispersion in analysts’ FY1 earnings forecasts, AvgVar β is a stock’s exposure to the average variance component of the 

market variance as in Chen and Petkova (2012) , and SUE is the most recent standardized unexpected earnings. Time-series averages of estimated coefficients ( ×100) are reported with t -statistics in parentheses. 
∗ , ∗∗ , and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% levels, respectively. 

Panel A: Lottery preference variables 

Stage Description Variable Lottery preference variables 

Skew Coskew E(Idioskew) Maxret RTP 

1 DGTW-adj ret Intercept 0.353 ∗∗∗ (6.47) 0.337 ∗∗∗ (6.11) 0.411 ∗∗∗ (7.34) 0.337 ∗∗∗ (6.11) 0.436 ∗∗∗ (3.98) 

on IVOL IVOL −17.401 ∗∗∗ ( −8.47) −16.955 ∗∗∗ ( −8.19) −20.138 ∗∗∗ ( −9.74) −16.955 ∗∗∗ ( −8.19) −23.229 ∗∗∗ ( −6.58) 

2 Add Intercept 0.355 ∗∗∗ (6.47) 0.339 ∗∗∗ (6.06) 0.456 ∗∗∗ (7.79) 0.270 ∗∗∗ (4.74) 0.433 ∗∗∗ (3.88) 

candidate IVOL −16.145 ∗∗∗ ( −7.67) −17.349 ∗∗∗ ( −8.28) −20.882 ∗∗∗ ( −9.56) 10.740 ∗∗∗ (2.85) −23.129 ∗∗∗ ( −6.67) 

variable Candidate −0.099 ∗∗∗ ( −5.53) −0.380 ∗∗ ( −2.49) 0.022 (0.45) −9.352 ∗∗∗ ( −10.20) −0.021 ( −0.08) 

3 IVOL on Intercept 2.398 ∗∗∗ (90.46) 2.474 ∗∗∗ (87.71) 1.260 ∗∗∗ (61.02) 0.767 ∗∗∗ (81.51) 2.096 ∗∗∗ (67.02) 

candidate Candidate 0.367 ∗∗∗ (34.31) 0.643 ∗∗∗ (9.90) 1.523 ∗∗∗ (41.60) 25.850 ∗∗∗ (238.67) 5.044 ∗∗∗ (45.26) 

variable Avg adj R 2 4.3% 4.0% 18.4% 77.9% 22.6% 

4 Decompose Stage 1 Candidate −1.785 −0.321 −2.969 −18.923 −5.189 

IVOL coefficient 10.3% ∗∗∗ (6.73) 1.9% (1.08) 14.7% ∗∗∗ (5.80) 112.0% ∗∗∗ (18.72) 22.3% ∗∗∗ (5.92) 

Residual −15.615 −16.633 −17.168 1.968 −18.040 

89.7% ∗∗∗ (58.88) 98.1% ∗∗∗ (56.09) 85.3% ∗∗∗ (33.52) −11.6% ∗ ( −1.95) 77.7% ∗∗∗ (20.58) 

Total −17.401 ∗∗∗ ( −8.47) −16.955 ∗∗∗ ( −8.19) −20.138 ∗∗∗ ( −9.74) −16.955 ∗∗∗ ( −8.19) −23.229 ∗∗∗ ( −6.58) 

100% 100% 100% 100% 100% 

Sample period 1963–2012 1963–2012 1968–2012 1963–2012 1983–2001 

Avg # firms/mth 3563.7 3580.5 2870.8 3580.5 3776.8 

(continued on next page) 
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Table 3 

Continued. 

Panel B: Market friction and other variables 

Stage Description Variable Market friction variables Other variables 

Lagret Amihud Zeroret Spread Dispersion AvgVar β SUE 

1 DGTW-adj ret Intercept 0.337 ∗∗∗ (6.12) 0.373 ∗∗∗ (6.90) 0.337 ∗∗∗ (6.11) 0.389 ∗∗∗ (4.89) 0.250 ∗∗∗ (2.97) 0.355 ∗∗∗ (6.13) 0.367 ∗∗∗ (6.14) 

on IVOL IVOL −16.964 ∗∗∗ ( −8.20) −18.401 ∗∗∗ ( −8.67) −16.955 ∗∗∗ ( −8.19) −20.032 ∗∗∗ ( −7.73) −14.326 ∗∗∗ ( −3.76) −17.158 ∗∗∗ ( −8.29) −17.431 ∗∗∗ ( −7.84) 

2 Add Intercept 0.244 ∗∗∗ (4.27) 0.396 ∗∗∗ (7.20) 0.345 ∗∗∗ (6.66) 0.379 ∗∗∗ (4.98) 0.249 ∗∗∗ (2.95) 0.349 ∗∗∗ (6.07) 0.285 ∗∗∗ (4.75) 

candidate IVOL −10.831 ∗∗∗ ( −4.88) −21.220 ∗∗∗ ( −9.38) −17.024 ∗∗∗ ( −8.30) −21.679 ∗∗∗ ( −7.23) −13.803 ∗∗∗ ( −3.70) −17.063 ∗∗∗ ( −8.29) −15.669 ∗∗∗ ( −7.01) 

variable Candidate −4.467 ∗∗∗ ( −13.72) 0.035 ∗∗∗ (4.63) 0.168 (0.62) 2.064 (1.26) −0.055 ( −1.08) −0.006 ( −1.08) 0.108 ∗∗∗ (17.21) 

3 IVOL on Intercept 2.350 ∗∗∗ (85.09) 2.376 ∗∗∗ (86.39) 2.439 ∗∗∗ (89.47) 1.824 ∗∗∗ (51.29) 2.185 ∗∗∗ (70.67) 2.483 ∗∗∗ (91.65) 2.600 ∗∗∗ (88.45) 

candidate Candidate 2.324 ∗∗∗ (21.51) 0.040 ∗∗∗ (19.31) 0.778 ∗∗∗ (10.32) 28.474 ∗∗∗ (34.63) 0.211 ∗∗∗ (16.27) 0.009 ∗∗∗ (6.05) −0.065 ∗∗∗ ( −34.43) 

variable Avg adj R 2 8.2% 11.3% 1.0% 28.9% 1.7% 0.5% 1.2% 

4 Decompose Stage 1 Candidate −5.714 0.441 −0.144 −6.087 −0.764 −0.167 −1.898 

IVOL coefficient 33.7% ∗∗∗ (6.47) −2.4% ( −0.69) 0.9% (0.72) 30.4% ∗∗∗ (5.44) 5.3% ∗ (1.92) 1.0% ∗ (1.80) 10.9% ∗∗∗ (7.35) 

Residual −11.250 −18.842 −16.810 −13.944 −13.562 −16.992 −15.533 

66.3% ∗∗∗ (12.73) 102% ∗∗∗ (29.64) 99.1% ∗∗∗ (83.49) 69.6% ∗∗∗ (12.46) 94.7% ∗∗∗ (34.12) 99.0% ∗∗∗ (183.00) 89.1% ∗∗∗ (60.18) 

Total −16.964 ∗∗∗ ( −8.20) −18.401 ∗∗∗ ( −8.67) −16.955 ∗∗∗ ( −8.19) −20.032 ∗∗∗ ( −7.73) −14.326 ∗∗∗ ( −3.76) −17.158 ∗∗∗ ( −8.29) −17.431 ∗∗∗ ( −7.84) 

100% 100% 100% 100% 100% 100% 100% 

Sample period 1963–2012 1963–2012 1963–2012 1984–2012 1982–2012 1968–2012 1971–2012 

Avg # firms/mth 3580.4 3327.3 3580.5 3716.6 2258.1 3232.1 3472.3 
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of γ Skew 

t and γ R 
t are –1.785% and –15.615%, respectively.

Since by construction the two coefficients sum up to the

Stage 1 coefficient of –17.401%, we can readily calculate the

fraction of the Stage 1 coefficient attributable to Skew as
−1 . 785 
−17 . 401 = 10.3% ( t = 6.73), and the fraction attributable to

the residual component is −15 . 615 
−17 . 401 = 89.7% ( t = 58.88). We

therefore conclude that Skew can explain 10.3% of the id-

iosyncratic volatility puzzle. 

We also examine the other skewness variables in Panel

A of Table 3 . The results show that Coskew explains only

1.9% ( t = 1.08) of the puzzle, and E(Idioskew) explains 14.7%

( t = 5.80) of the puzzle. 

Next, we see that the portion of the puzzle that is ex-

plained by Maxret is 112.0% ( t = 18.72). 11 It thus appears

that Maxret explains the idiosyncratic volatility puzzle en-

tirely. However, considering the near perfect collinearity

between Maxret and IVOL and that Maxret is essentially

a range-based measure of volatility, this finding might be

mechanical. 

The last column of Panel A shows that RTP explains

22.3% ( t = 5.92) of the idiosyncratic volatility puzzle. How-

ever, we note that this result is obtained over a relatively

short sample period (1983–2001) compared to the rest of

the candidate variables. 

While our methodology directly quantifies the fraction

of the idiosyncratic volatility puzzle explained by a lottery

preference-based candidate variable, one can also evaluate

the validity of the candidate variable as a proxy for lot-

tery preferences by studying its return predictability after

controlling for IVOL . For example, although E(Idioskew) ex-

plains more than 10% (14.7%) of the puzzle, it has no inde-

pendent return predictive power after controlling for IVOL

according to Stage 2 regressions. If E(Idioskew) is a good

proxy for the lottery feature of a stock, it seems reason-

able to expect both the part of E(Idioskew) that is related

to IVOL and the part that is unrelated to IVOL to predict

returns negatively. The fact that the latter has no return

predictive power (average coefficient = 0.022% and t =
0.45 from Stage 2 regressions) implies that only the part

of E(Idioskew) that is related to IVOL is consistent with the

lottery preference-based explanation. One reason for this

might be that one of the components of E(Idioskew) is IVOL

itself, thus introducing a potential mechanical relation be-

tween the two variables. 

Of the other lottery preference-based candidate vari-

ables, RTP also fails to predict returns after controlling for

IVOL (average coefficient = −0.021% and t = −0.08). Hence,

its ability to measure the lottery feature of a stock must

also be caveated since only the part of RTP that is corre-

lated with IVOL has a negative and significant relation with

stock returns. For Skew, Coskew , and Maxret , their return

predictability remains negative and significant after con-

trolling for IVOL in Stage 2 regressions, which suggests that

these three variables are viable lottery preference proxies

(although Coskew can only explain a negligible fraction of

the IVOL puzzle according to our decomposition method-
11 The reason this fraction is above 100% is because the adding-up con- 

straint in Stage 4 requires the Maxret component and the residual com- 

ponent to add up to the Stage 1 coefficient on IVOL. 
ology and Maxret is likely to be mechanically related to

IVOL ). 

Overall, the results from Table 3 Panel A suggest that

most of the lottery preference-based candidate variables

show some promise in explaining the idiosyncratic volatil-

ity puzzle, with Maxret, RTP, E(Idioskew) , and Skew each ex-

plaining more than 10% of the puzzle. The concern about

Maxret , however, is its mechanical relation with IVOL . And

while RTP and E(Idioskew) capture sizable fractions of the

puzzle, their ability to measure the lottery feature of a

stock is hindered by the fact that neither of them can pre-

dict returns after controlling for IVOL . 

3.4. Candidate variables related to market frictions 

Panel B of Table 3 examines the candidate variables

related to market frictions. We see that both Lagret and

Spread explain about one-third of the idiosyncratic volatil-

ity puzzle (33.7% for Lagret and 30.4% for Spread with t -

statistics of 6.47 and 5.44, respectively), thus leaving two-

thirds of the puzzle explained by the residual component.

These results suggest that bid-ask bounce and other mi-

crostructure effects (that likely drive the short-term return

reversal) contribute significantly to the puzzle. 

On the other hand, other illiquidity proxies such as Ami-

hud and Zeroret fail to explain significant fractions of the

puzzle. The explained fraction is 0.9% ( t = 0.72) for Zeroret

and actually negative at –2.4% ( t = −0.69) for Amihud . In-

tuitively, the reason that Amihud has a negative contribu-

tion to the idiosyncratic volatility puzzle is because it is

positively correlated with IVOL but its return predictability

after controlling for IVOL is also positive, which is in the

opposite direction of the idiosyncratic volatility puzzle. The

low explanatory power of Amihud despite its high correla-

tion with IVOL shows that our decomposition methodology

does not necessarily attribute a large explained fraction to

a candidate variable just because it has a high correlation

with idiosyncratic volatility . 

In sum, some market friction-based candidate variables,

namely, Lagret and Spread, capture sizable portions of the

idiosyncratic volatility puzzle, while others ( Amihud and

Zeroret ) have very little success in explaining the puzzle.

We also note that Lagret continues to predict returns neg-

atively (and significantly) after controlling for IVOL , which

is consistent with the evidence in the literature regarding

the impact of market frictions on stock returns. On the

other hand, the relation between Spread and returns be-

comes insignificant after controlling for IVOL . 

3.5. Candidate variables related to other explanations 

Panel B of Table 3 also examines candidate variables

that cannot be grouped into the lottery preference or mar-

ket friction categories. We first look at Dispersion and find

that it can only explain a small fraction (5.3%, t = 1.92) of

the idiosyncratic volatility puzzle. 12 
12 Ang, Hodrick, Xing, and Zhang (2006) show that the Fama-French al- 

pha of an IVOL quintile spread portfolio decreases by about two-thirds af- 

ter controlling for Dispersion (using two-way sorts). In unreported results, 

we find that the reduction in alpha is largely due to requiring stocks to 
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The next candidate variable we investigate is AvgVar β . 

This variable contributes very little in explaining the puz- 

zle, with the explained fraction equal to 1.0% ( t = 1.80). 

We also examine whether SUE can explain the idiosyn- 

cratic volatility puzzle. We find that it captures 10.9% ( t 

= 7.35) of the puzzle, suggesting that the poor earnings 

performance of high idiosyncratic volatility stocks helps to 

explain the idiosyncratic volatility puzzle. Finally, we note 

that while Dispersion and AvgVar β have no return predic- 

tive power after controlling for IVOL, SUE has a positive and 

significant relation with returns after controlling for IVOL , 

which is consistent with prior studies that show a post- 

announcement drift following earnings surprises. 

3.6. Interaction effects 

As mentioned in the introduction, several papers show 

that there exists variation in the idiosyncratic volatility 

puzzle across stocks with different price levels, analyst 

coverage, credit ratings, short interest, leverage, institu- 

tional ownership, B/M ratios, and exchange listings. We ex- 

amine what fractions of the idiosyncratic volatility puz- 

zle come from the interaction effects between idiosyncratic 

volatility and these conditioning characteristics. 13 To do so, 

we define CharRank as the decile rank of a conditioning 

characteristic (scaled to be between zero and one and in 

ascending order of the characteristic except for analyst cov- 

erage, credit rating, institutional ownership, and B/M ratio) 

and then include CharRank and CharRank × IVOL in our de- 

composition analysis. 

Table 4 reports the results for the eight conditioning 

characteristics. We see from Stage 2 regressions that the 

coefficients on the interaction term CharRank × IVOL are 

mostly negative and statistically significant, which suggests 

that the idiosyncratic volatility puzzle is stronger among 

stocks with high prices, low analyst coverage, poor credit 

ratings, high short interest, high leverage, low institutional 

ownership, and low B/M ratios. However, we find no ev- 

idence that the idiosyncratic volatility puzzle is stronger 

among stocks with non-NYSE listings. The Stage 4 decom- 

position results show that the average fraction explained 

by CharRank and CharRank × IVOL is 83.9% across the eight 

conditioning characteristics. This large explained fraction is 

not surprising, however, since IVOL itself enters into the 

interaction term. In unreported results, we break the me- 

chanical relation between IVOL and CharRank × IVOL by 

replacing IVOL in the interaction term with IVOLRank (the 

decile rank of IVOL ) and obtain a more modest average ex- 
have non-missing Dispersion rather than the pure effect of controlling for 

Dispersion while keeping the sample constant. 
13 Price is the stock price at the end of previous month ( t − 1). Ana- 

lyst coverage is the number of analysts issuing FY1 earnings forecasts in 

month t − 1 (firms with no I/B/E/S coverage are excluded). Credit rating 

is the Standard & Poor’s (S&P) long-term issuer rating reported in Compu- 

stat (SPLTICRM) and numerically coded following Avramov, Chordia, Jos- 

tova, and Philipov (2013) . Short interest is measured in month t − 1 using 

the data in Cohen, Diether, and Malloy (2007) . Leverage is the Compustat 

long-term debt (LTDEBT) over total assets (AT) from the previous fiscal 

year end. Institutional ownership is measured using data reported in the 

most recent quarterly Thomson 13F filings. Non-NYSE listing is identified 

using the EXCHCD flag on CRSP. 
plained fraction of 46.3% across the conditioning character- 

istics. 

4. Evaluating multiple candidate explanations at the 

same time 

4.1. Multivariate analysis 

After investigating each of the candidate variables in 

isolation, we now turn to multivariate analysis. We want to 

know the marginal contribution of each variable after con- 

trolling for competing candidate variables. In addition, we 

are interested in the total fraction of the puzzle these can- 

didate variables can collectively explain. The linear adding- 

up constraint of our decomposition methodology ensures 

that their combined contributions plus that of the residual 

component add up to 100% of the puzzle. 

Table 5 reports the results of the multivariate analysis. 

We exclude Maxret from the analysis due to its mechan- 

ical relation with IVOL . The remaining candidate variables 

are included in Model 1. We see that the 11 candidate vari- 

ables together explain 29.0% of the idiosyncratic volatility 

puzzle and the residual component accounts for the re- 

maining 71.0% ( t = 5.86) of the puzzle. The largest con- 

tributor is Spread which captures 7.6% of the puzzle, fol- 

lowed by Lagret at 5.7%, although neither of these frac- 

tions is statistically different from zero ( t -statistics of 0.52 

and 1.03, respectively). None of the other candidate vari- 

ables explains more than 5% of the puzzle though some of 

the explained fractions are statistically significant, namely, 

E(Idioskew) at 4.2% ( t = 2.13), Dispersion at 3.4% ( t = 2.66),

and SUE at 2.4% ( t = 2.76). For most of the 11 candidate

variables, the explained fractions are significantly lower 

than their univariate contributions. This is likely the result 

of controlling for other candidate variables as well as the 

limited sample for Model 1 due to the availability of some 

of the candidate variables. 

In Model 2, we drop both RTP and Spread to extend the 

sample period to 1982–2012 (from 1984 to 2001 in Model 

1) and increase the average cross-sectional sample size 

to 1,806 stocks per month (from 1,524 stocks per month 

in Model 1). The total fraction of the puzzle explained 

by the remaining nine candidate variables increases only 

slightly to 29.9%, with E(Idioskew) and Dispersion contribut- 

ing 10.7% ( t = 1.98) and 5.6% ( t = 3.22), respectively, and

the other seven candidate variables making up the rest 

(13.6%). In this model, the residual unexplained fraction is 

still large and significant at 70.1% ( t = 6.56). 

In Model 3, we further drop Dispersion to extend 

the sample period to 1971–2012 and increase the cross- 

sectional sample size to 2,752 stocks per month. The 

total explained fraction now increases substantially to 

54.5% with the residual component capturing the re- 

maining 45.5% ( t = 10.06). 14 Interestingly, Lagret , which 
14 Unreported results show that if we further drop SUE from Model 3, 

we can extend the sample period back to 1968 and in this case the total 

fraction of the puzzle explained by the remaining seven candidate vari- 

ables is 45.8%. In addition, if we add Maxret (which is mechanically re- 

lated to IVOL ) to Model 1, unsurprisingly, the total explained fraction in- 

creases considerably to 85.8%. 
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Table 4 

Decomposing the idiosyncratic volatility puzzle: interaction analysis. 

Using firm-level Fama-MacBeth cross-sectional regressions, the negative relation between idiosyncratic volatility ( IVOL ) and DGTW-adjusted returns is 

decomposed into components that are related to a conditioning characteristic, its interaction with IVOL , and a residual component. Stocks with prices less 

than $1 at the end of the previous month are excluded. IVOL is the standard deviation of residuals from a regression of daily stock returns in month t 

− 1 on the Fama and French (1993) factors. The conditioning characteristics are price, analyst coverage, credit rating, short interest, leverage, institutional 

ownership, B/M ratio, and a non-NYSE dummy. CharRank is the decile rank (scaled between zero and one and in ascending order of the characteristic 

except for analyst coverage, credit rating, institutional ownership, and B/M ratio) of a conditioning characteristic. For non-NYSE listing, CharRank is equal 

to one for non-NYSE stocks and zero otherwise. The standard errors of the fractions of the puzzle explained are determined using the multivariate delta 

method. Time-series averages of estimated coefficients ( ×100) are reported with t -statistics in parentheses. ∗ , ∗∗ , and ∗∗∗ denote statistical significance at 

the 10%, 5%, and 1% levels, respectively. 

Stage Description Variable Decile rank of a conditioning characteristic 

Price Analyst coverage Credit rating Short interest 

1 DGTW-adj ret Intercept 0.337 ∗∗∗ (6.11) 0.293 ∗∗∗ (3.54) 0.350 ∗∗∗ (3.91) 0.374 ∗∗∗ (2.72) 

on IVOL IVOL −16.955 ∗∗∗ ( −8.19) −15.815 ∗∗∗ ( −4.51) −23.596 ∗∗∗ ( −4.95) −13.404 ∗∗∗ ( −3.99) 

2 Add candidate Intercept 0.783 ∗∗∗ (9.66) 0.156 (1.45) −0.116 ( −0.77) 0.191 (0.85) 

variables IVOL −20.782 ∗∗∗ ( −7.93) −12.949 ∗∗ ( −2.10) 5.367 (0.61) −2.526 ( −0.67) 

CharRank −0.439 ∗∗∗ ( −4.04) 0.286 ∗∗ (2.09) 0.687 ∗∗∗ (2.95) 0.528 ∗∗ (2.00) 

CharRank × IVOL −13.835 ∗∗ ( −2.57) −6.765 ( −0.97) −39.717 ∗∗∗ ( −3.70) −27.280 ∗∗∗ ( −5.31) 

3 IVOL on candidate Intercept 3.493 ∗∗∗ (79.31) 1.891 ∗∗∗ (64.48) 1.328 ∗∗∗ (56.25) 3.860 ∗∗∗ (73.25) 

variables CharRank −4.867 ∗∗∗ ( −80.55) −2.335 ∗∗∗ ( −56.94) −1.440 ∗∗∗ ( −48.41) −5.765 ∗∗∗ ( −68.93) 

CharRank × IVOL 150.153 ∗∗∗ (257.86) 122.170 ∗∗∗ (331.44) 110.809 ∗∗∗ (432.41) 150.476 ∗∗∗

Avg adj R 2 52.5% 83.7% 90.8% 64.4% 

4 Decompose Stage 1 CharRank 0.912 1.120 3.642 4.469 

IVOL coefficient −5.4% ( −0.62) −7.1% ( −1.28) −15.4% ∗∗∗ ( −3.18) −33.3% ∗∗ ( −2.27) 

CharRank × IVOL −8.303 −15.256 −27.807 −17.108 

49.0% ∗∗∗ (5.66) 96.5% ∗∗∗ (10.24) 118% ∗∗∗ (19.81) 128% ∗∗∗ (7.32) 

Residual −9.564 −1.680 0.569 −0.765 

56.4% ∗∗∗ (16.59) 10.6% ∗ (1.95) −2.4% ( −0.61) 5.7% (0.69) 

Total −16.955 ∗∗∗ ( −8.19) −15.815 ∗∗∗ ( −4.51) −23.596 ∗∗∗ ( −4.95) −13.404 ∗∗∗ ( −3.99) 

100% 100% 100% 100% 

Sample period 1963–2012 1982–2012 1986–2012 1988–2005 

Avg # firms/mth 3580.5 2685.1 960.0 2917.7 

Leverage Inst. own. B/M Non - NYSE 

1 DGTW-adj ret Intercept 0.337 ∗∗∗ (6.12) 0.393 ∗∗∗ (5.62) 0.337 ∗∗∗ (6.11) 0.337 ∗∗∗ (6.11) 

on IVOL IVOL −16.978 ∗∗∗ ( −8.21) −19.215 ∗∗∗ ( −7.65) −16.955 ∗∗∗ ( −8.19) −16.955 ∗∗∗ ( −8.19) 

2 Add candidate Intercept 0.328 ∗∗∗ (4.78) 0.232 ∗∗∗ (2.84) 0.173 ∗∗ (2.52) 0.330 ∗∗∗ (5.68) 

variables IVOL −12.287 ∗∗∗ ( −4.78) −13.232 ∗∗∗ ( −2.94) −11.571 ∗∗∗ ( −4.31) −19.962 ∗∗∗ ( −5.98) 

CharRank 0.041 (0.52) 0.258 ∗∗ (2.19) 0.357 ∗∗∗ (4.90) 0.071 (1.10) 

CharRank × IVOL −10.284 ∗∗∗ ( −3.14) −9.513 ∗ ( −1.73) −11.815 ∗∗∗ ( −3.96) 2.196 (0.65) 

3 IVOL on candidate Intercept 2.635 ∗∗∗ (78.77) 2.090 ∗∗∗ (75.50) 2.631 ∗∗∗ (83.25) 1.785 ∗∗∗ (103.28) 

variables CharRank −3.740 ∗∗∗ ( −77.11) −2.597 ∗∗∗ ( −70.58) −3.747 ∗∗∗ ( −78.81) −1.785 ∗∗∗ ( −103.28) 

CharRank × IVOL 142.964 ∗∗∗ (387.60) 122.161 ∗∗∗ (320.12) 138.984 ∗∗∗ (438.62) 10 0.0 0 0 ∗∗∗ (10 0 0 0 0) 

Avg adj R 2 68.3% 85.4% 66.7% 83.2% 

4 Decompose Stage 1 CharRank 2.376 3.382 0.392 1.305 

IVOL coefficient −14.0% ∗∗∗ ( −2.84) −17.6% ∗∗∗ ( −3.58) −2.3% ( −1.58) −7.7% ∗∗ ( −2.16) 

CharRank × IVOL −15.493 −20.707 −13.688 −14.854 

91.3% ∗∗∗ (13.44) 108% ∗∗∗ (15.33) 80.7% ∗∗∗ (20.64) 87.6% ∗∗∗ (14.98) 

Residual −3.862 −1.890 −3.658 −3.406 

22.7% ∗∗∗ (7.28) 9.8% ∗∗∗ (3.01) 21.6% ∗∗∗ (6.60) 20.1% ∗∗∗ (5.99) 

Total −16.978 ∗∗∗ ( −8.21) −19.215 ∗∗∗ ( −7.65) −16.955 ∗∗∗ ( −8.19) −16.955 ∗∗∗ ( −8.19) 

100% 100% 100% 100% 

Sample period 1963–2012 1979–2012 1963–2012 1963–2012 

Avg # firms/mth 3572.4 3964.5 3580.5 3580.5 

 

 

 

 

 

 

 

 

 

explained a small and statistically insignificant fraction of

the puzzle in Model 2, is the biggest contributor in Model

3 at 21.5% ( t = 5.74), followed by E(Idioskew) at 15.1% ( t

= 6.24), Skew at 6.5% ( t = 6.35), and SUE at 5.1% ( t =
7.58). The rest of the candidate variables ( Coskew, Amihud,
Zeroret , and AvgVar β) together only explain 6.2% of the

puzzle. 

The results from Table 5 are summarized in Panel A

of Fig. 1 where we plot the marginal contributions of the

three groups of candidate variables (lottery preferences,
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Table 5 

Decomposing the idiosyncratic volatility puzzle: multivariate analysis. 

Using firm-level Fama-MacBeth cross-sectional regressions, the negative relation between month t − 1 idiosyncratic volatility ( IVOL ) and month t DGTW- 

adjusted returns is decomposed into a number of components each related to a candidate variable and a residual component. Stocks with prices less than 

$1 at the end of the previous month are excluded. IVOL is the standard deviation of residuals from a regression of daily stock returns in month t − 1 

on the Fama and French (1993) factors. Skew is the month t − 1 skewness of raw daily returns. Coskew is the coskewness measure in Chabi-Yo and Yang 

(2009) . E(Idioskew) is the expected idiosyncratic skewness measure in Boyer, Mitton, and Vorkink (2010). RTP is the retail trading proportion computed 

from ISSM and TAQ. Lagret is the month t − 1 return. Amihud is the illiquidity measure in Amihud (2002) . Zeroret is the fraction of trading days in month 

t − 1 with a zero return. Spread is the average daily bid-ask spread in month t − 1 from ISSM and TAQ. Dispersion is the dispersion in analysts’ FY1 

earnings forecasts. AvgVar β is a stock’s exposure to the average variance component of the market variance as in Chen and Petkova (2012) . SUE is the most 

recent standardized unexpected earnings. The standard errors of the fractions of the puzzle explained are determined using the multivariate delta method. 

Time-series averages of estimated coefficients ( ×100) are reported with t -statistics in parentheses. ∗ , ∗∗ , and ∗∗∗ denote statistical significance at the 10%, 

5%, and 1% levels, respectively. 

Stg. Description Variable Model 1 Model 2 Model 3 

Coeff. Fraction t -stat Coeff. Fraction t -stat Coeff. Fraction t -stat 

1 DGTW-adj ret Intercept 0.263 ∗∗ (2.04) 0.254 ∗∗∗ (2.90) 0.412 ∗∗∗ (7.17) 

on IVOL IVOL −18.560 ∗∗∗ ( −3.17) −14.231 ∗∗∗ ( −3.49) −19.028 ∗∗∗ ( −8.89) 

2 Add candidate Intercept 0.373 ∗∗∗ (2.63) 0.287 ∗∗∗ (3.01) 0.364 ∗∗∗ (5.53) 

variables IVOL −25.582 ∗∗∗ ( −4.27) −13.203 ∗∗∗ ( −3.63) −12.629 ∗∗∗ ( −5.14) 

Skew 0.158 ∗∗∗ (5.07) 0.120 ∗∗∗ (4.12) 0.092 ∗∗∗ (4.73) 

Coskew 0.348 (0.63) 0.225 (0.45) 0.058 (0.30) 

E(IdioSkew) −0.151 ( −1.07) −0.065 ( −0.75) −0.087 ( −1.47) 

RTP −2.338 ∗∗∗ ( −3.01) 

Lagret −4.391 ∗∗∗ ( −7.13) −3.829 ∗∗∗ ( −8.46) −5.253 ∗∗∗ ( −13.78) 

Amihud −0.073 ( −0.49) 0.014 (0.27) 0.008 ∗∗∗ (3.25) 

Zeroret −0.298 ( −0.98) 0.157 (0.40) −0.135 ( −0.49) 

Spread 24.488 ∗∗∗ (3.14) 

Dispersion −0.132 ∗∗∗ ( −2.86) −0.104 ∗ ( −1.95) 

AvgVar β 0.003 (0.21) 0.006 (0.53) −0.004 ( −0.67) 

SUE 0.061 ∗∗∗ (6.22) 0.051 ∗∗∗ (7.07) 0.117 ∗∗∗ (15.88) 

3 IVOL on candidate Intercept 1.361 ∗∗∗ (46.27) 1.446 ∗∗∗ (65.63) 1.342 ∗∗∗ (70.82) 

variables Skew 0.093 ∗∗∗ (13.71) 0.088 ∗∗∗ (11.53) 0.199 ∗∗∗ (29.93) 

Coskew 0.267 ∗ (1.90) 0.665 ∗∗∗ (5.24) 0.284 ∗∗∗ (4.53) 

E(IdioSkew) 0.198 ∗∗∗ (7.47) 0.798 ∗∗∗ (31.57) 1.381 ∗∗∗ (49.82) 

RTP 1.543 ∗∗∗ (10.45) 

Lagret 0.326 ∗∗∗ (2.72) 0.196 ∗ (1.71) 1.565 ∗∗∗ (16.02) 

Amihud −0.127 ∗∗∗ ( −9.87) 0.116 ∗∗∗ (11.32) 0.024 ∗∗∗ (28.15) 

Zeroret −3.039 ∗∗∗ ( −28.27) −0.562 ∗∗∗ ( −5.96) −1.395 ∗∗∗ ( −22.30) 

Spread 56.846 ∗∗∗ (43.70) 

Dispersion 0.078 ∗∗∗ (14.72) 0.129 ∗∗∗ (22.01) 

AvgVar β 0.010 ∗∗∗ (7.61) 0.007 ∗∗∗ (4.59) 0.009 ∗∗∗ (8.36) 

SUE −0.010 ∗∗∗ ( −11.94) −0.019 ∗∗∗ ( −19.05) −0.031 ∗∗∗ ( −27.09) 

Avg adj R 2 47.5% (66.25) 26.2% (51.67) 37.1% (76.29) 

4 Decompose Stage 1 Skew −0.450 2.4% (1.51) −0.432 3.0% (1.56) −1.246 6.5% ∗∗∗ (6.35) 

IVOL coefficient Coskew −0.520 2.8% (0.99) −0.505 3.5% (0.73) −0.593 3.1% ∗∗∗ (2.95) 

E(IdioSkew) −0.772 4 .2% ∗∗ (2.13) −1.516 10 .7% ∗∗ (1.98) −2.874 15 .1% ∗∗∗ (6.24) 

RTP −0.043 0 .2% (0.08) 

Lagret −1.050 5 .7% (1.03) −0.072 0 .5% (0.07) −4.085 21 .5% ∗∗∗ (5.74) 

Amihud 0.351 −1 .9% ( −0.69) −0.531 3 .7% (0.69) −0.726 3 .8% (1.60) 

Zeroret −0.248 1 .3% (0.28) 0.136 −1 .0% ( −0.47) 0.186 −1 .0% ( −1.02) 

Spread −1.412 7 .6% (0.52) 

Dispersion −0.640 3 .4% ∗∗∗ (2.66) −0.793 5 .6% ∗∗∗ (3.22) 

AvgVar β −0.150 0 .8% (0.81) 0.032 −0 .2% ( −0.12) −0.060 0 .3% (0.67) 

SUE −0.448 2 .4% ∗∗∗ (2.76) −0.579 4 .1% ∗∗∗ (3.12) −0.973 5 .1% ∗∗∗ (7.58) 

Residual −13.178 71 .0% ∗∗∗ (5.86) −9.972 70 .1% ∗∗∗ (6.56) −8.657 45 .5% ∗∗∗ (10.06) 

Total −18.560 ∗∗∗ 100% ( −3.17) −14.231 ∗∗∗ 100% ( −3.49) −19.028 ∗∗∗ 100% ( −8.89) 

Sample period 1984–2001 1982–2012 1971–2012 

Avg # firms/mth 1524.4 1806.0 2752.4 
market frictions, and others) and the residual unex- 

plained fractions using bar charts. We see that vari- 

ables related to lottery preferences of investors contribute 

the most in explaining the idiosyncratic volatility puz- 

zle, accounting for 10–25% of the puzzle. Market friction- 

based candidate variables explain 3–24% of the puzzle 
and variables related to other explanations account for 

5–10% of the puzzle. On the other hand, the unex- 

plained fraction is still very large at 46–71%. Therefore, 

while the lottery preferences of investors and market fric- 

tions prove to be important economic drivers of the id- 

iosyncratic volatility puzzle, a significant portion of the 
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Panel A: Full sample from Table 5 

Panel B: Average of nine subsamples from Table 6 
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Fig. 1. Average fractions of the idiosyncratic volatility puzzle explained by various groups of candidate variables. The fractions of the idiosyncratic volatility 

puzzle explained by various groups of candidate variables from Table 5 are plotted in Panel A. Panel B plots the average fractions across the nine subsamples 

from Table 6 . Lottery preference-based candidate variables consist of Skew, Coskew, E(Idioskew) , and RTP . Market friction-based candidate variables consist 

of Lagret, Amihud, Zeroret , and Spread . Candidate variables related to other explanations consist of Dispersion, AvgVar β , and SUE . Model 1 includes all 

the candidate variables in the multivariate decomposition analysis. Model 2 excludes RTP and Spread , and Model 3 further excludes Dispersion . Residual 

represents the fraction of the puzzle that cannot be explained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

puzzle cannot be accounted for by the explanations we

examine. 

4.2. Subsample analysis 

In this subsection, we repeat the multivariate decom-

position analysis in Table 5 for subsamples of stocks that

have been shown to exhibit a stronger idiosyncratic volatil-

ity puzzle. This allows us to investigate whether a candi-

date variable works as well in those subsamples as it does

in the full sample. The subsamples we examine include

stocks that have prices of at least five dollars, low ana-

lyst coverage (three or fewer analysts), poor credit ratings

(the lowest three credit rating deciles), high short inter-

est (the highest three short-interest deciles), high leverage

(the highest three leverage deciles), low institutional own-
ership (the lowest three institutional ownership deciles),

low B/M ratios (the lowest three B/M deciles), or non-NYSE

listings. In addition, we also examine the idiosyncratic

volatility puzzle in non-January months ( Doran, Jiang, and

Peterson, 2012 ). 

Table 6 reports the results of the multivariate decom-

position analysis for the nine subsamples. To conserve

space, we only report the Stage 4 results. The table shows

that a bigger fraction of the idiosyncratic volatility puzzle

is typically explained by the candidate variables in these

subsamples than in the full sample. Specifically, the total

explained fraction is 26–54% (across the three models)

for stocks with prices of at least five dollars, 37–50% for

low analyst coverage stocks, 47–63% for poor credit rating

stocks, 34–52% for high short interest stocks, 41–49%

for high leverage stocks, 54–66% for low institutional



182 K. Hou, R.K. Loh / Journal of Financial Economics 121 (2016) 167–194 

Table 6 

Decomposing the idiosyncratic volatility puzzle: subsample analysis. 

Using firm-level Fama-MacBeth cross-sectional regressions, the negative relation between month t − 1 idiosyncratic volatility (IVOL) and month t DGTW- 

adjusted returns is decomposed into a number of components each related to a candidate variable and a residual component for subsamples of stocks with 

prices of at least $5 (Panel A), low analyst coverage (1–3 analysts, Panel B), poor credit ratings (lowest three deciles, Panel C), high short interest (highest 

three deciles, Panel D), high leverage (highest three deciles, Panel E), low institutional ownership (lowest three deciles, Panel F), low B/M ratios (lowest 

three deciles, Panel G), non-NYSE listings (Panel H), and non-January months (Panel I). IVOL is the standard deviation of residuals from a regression of daily 

stock returns in month t − 1 on the Fama and French (1993) factors. Skew is the month t − 1 skewness of raw daily returns. Coskew is the coskewness 

measure in Chabi-Yo and Yang (2009) . E(Idioskew) is the expected idiosyncratic skewness measure in Boyer, Mitton, and Vorkink (2010) . RTP is the retail 

trading proportion computed from ISSM and TAQ. Lagret is the month t − 1 return. Amihud is the illiquidity measure in Amihud (2002) . Zeroret is the 

fraction of trading days in month t − 1 with a zero return. Spread is the average daily bid-ask spread in month t − 1 from ISSM and TAQ. Dispersion 

is the dispersion in analysts’ FY1 earnings forecasts. AvgVar β is a stock’s exposure to the average variance component of the market variance as in Chen 

and Petkova (2012) . SUE is the most recent standardized unexpected earnings. The standard errors of the fractions of the puzzle explained are determined 

using the multivariate delta method. Time-series averages of estimated coefficients ( ×100) are reported with t -statistics in parentheses. ∗ , ∗∗ , and ∗∗∗ denote 

statistical significance at the 10%, 5%, and 1% levels, respectively. 

Candidate Model 1 Model 2 Model 3 

Coeff. Fraction t -stat Coeff. Fraction t -stat Coeff. Fraction t -stat 

Panel A: Prices ≥$5 

Skew −0.345 1.6% (1.08) −0.390 2.3% (1.45) −1.227 5.4% ∗∗∗ (5.76) 

Coskew −0.581 2.7% (0.93) −1.028 6.1% (1.47) −0.737 3.2% ∗∗ (2.40) 

E(IdioSkew) −0.655 3.1% (1.46) −2.190 13.0% ∗∗∗ (3.25) −2.008 8.8% ∗∗∗ (4.16) 

RTP −0.734 3.5% ∗ (1.85) 

Lagret −1.495 7.1% (1.40) −1.269 7.5% (1.33) −5.352 23.4% ∗∗∗ (6.75) 

Amihud 0.981 −4.6% ∗ ( −1.67) −1.255 7.4% ∗∗∗ (2.64) −1.783 7.8% ∗∗∗ (4.71) 

Zeroret 1.096 −5.2% ( −0.91) 0.216 −1.3% ( −0.57) 0.192 −0.8% ( −0.49) 

Spread −2.508 11.9% (1.29) 

Dispersion −0.502 2.4% ∗ (1.84) −0.657 3.9% ∗∗ (2.25) 

AvgVar β −0.170 0.8% (0.69) −0.177 1.0% (0.44) −0.195 0.9% ∗ (1.88) 

SUE −0.495 2.3% ∗∗∗ (2.69) −0.609 3.6% ∗∗∗ (3.38) −1.333 5.8% ∗∗∗ (6.49) 

Residual −15.740 74.4% ∗∗∗ (7.40) −9.549 56.5% ∗∗∗ (6.87) −10.451 45.6% ∗∗∗ (9.56) 

Total −21.147 ∗∗∗ 100% ( −3.46) −16.907 ∗∗∗ 100% ( −4.22) −22.896 ∗∗∗ 100% ( −8.91) 

Sample period 1984–2001 1982–2012 1971–2012 

Avg # firms/mth 1448.1 1687.8 2267.9 

Panel B: Low analyst coverage 

Skew −1.704 7.0% ∗∗∗ (2.66) −0.637 3.6% ∗ (1.77) −0.992 4.9% ∗∗ (2.35) 

Coskew −1.380 5.7% (1.06) 0.081 −0.5% ( −0.10) −1.369 6.7% ∗ (1.82) 

E(IdioSkew) −1.158 4.8% ∗∗ (2.33) −1.946 11.0% ∗∗ (2.16) −2.594 12.7% ∗∗∗ (3.35) 

RTP −0.297 1.2% (0.29) 

Lagret −3.036 12.5% ∗∗ (2.32) −0.029 0.2% (0.03) −1.023 5.0% (1.03) 

Amihud 2.075 −8.5% ( −1.52) −1.439 8.1% (1.49) −0.936 4.6% (0.93) 

Zeroret 0.601 −2.5% ( −0.32) 1.151 −6.5% ∗ ( −1.74) 0.600 −2.9% ( −1.22) 

Spread −5.497 22.6% (1.18) 

Dispersion −0.348 1.4% (0.58) −2.358 13.3% ∗∗∗ (3.34) 

AvgVar β −0.269 1.1% (0.79) −0.228 1.3% (1.02) −0.167 0.8% (0.89) 

SUE −1.038 4.3% ∗∗∗ (2.75) −1.153 6.5% ∗∗∗ (3.27) −1.442 7.1% ∗∗∗ (4.45) 

Residual −12.303 50.5% ∗∗∗ (4.21) −11.174 63.0% ∗∗∗ (6.72) −12.439 61.1% ∗∗∗ (8.30) 

Total −24.352 ∗∗∗ 100% ( −3.73) −17.732 ∗∗∗ 100% ( −4.01) −20.363 ∗∗∗ 100% ( −4.70) 

Sample period 1984–2001 1983–2012 1982–2012 

Avg # firms/mth 367.7 440.7 763.3 

Panel C: Poor credit ratings 

Skew −0.397 1.8% (0.30) −0.789 5.0% (0.86) −0.427 1.8% (0.74) 

Coskew −1.007 4.6% (0.42) −2.168 13.7% (1.29) −0.656 2.7% (0.48) 

E(IdioSkew) −1.029 4.7% (0.78) −0.628 4.0% (0.55) −2.730 11.3% ∗∗∗ (2.66) 

RTP −1.023 4.7% (0.49) 

Lagret −0.859 3.9% (0.58) −1.836 11.6% (1.29) −2.054 8.5% ∗ (1.70) 

Amihud 1.307 −5.9% ( −0.57) −1.082 6.9% (0.87) −4.346 18.0% ∗∗∗ (3.36) 

Zeroret −4.386 20.0% (1.13) −0.835 5.3% (1.25) 0.063 −0.3% ( −0.15) 

Spread −6.524 29.7% (0.89) 

Dispersion 0.538 −2.4% ( −0.77) 0.389 −2.5% ( −0.57) 

AvgVar β 0.148 −0.7% ( −0.22) 0.326 −2.1% ( −0.60) −0.017 0.1% (0.05) 

SUE −0.498 2.3% (0.80) −0.813 5.2% (1.36) −1.253 5.2% ∗∗∗ (2.81) 

Residual −8.246 37.5% ∗ (1.82) −8.337 52.9% ∗∗∗ (2.98) −12.791 52.8% ∗∗∗ (5.80) 

Total −21.975 ∗∗ 100% ( −2.08) −15.774 ∗∗ 100% ( −2.33) −24.210 ∗∗∗ 100% ( −4.42) 

Sample period 1987–2001 1986–2012 1986–2012 

Avg # firms/mth 142.4 176.7 234.9 

Panel D: High short interest 

Skew −0.322 1.8% (0.62) −0.030 0.1% (0.06) −0.357 1.1% (0.94) 

Coskew 0.690 −3.8% ( −0.43) −0.880 3.6% (0.68) −1.170 3.5% ∗ (1.92) 

( continued on next page ) 
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Table 6 ( continued ) 

Candidate Model 1 Model 2 Model 3 

Coeff. Fraction t -stat Coeff. Fraction t -stat Coeff. Fraction t -stat 

E(IdioSkew) −1.637 9.1% (0.94) −5.761 23.3% ∗∗∗ (3.30) −12.122 36.1% ∗∗∗ (7.22) 

RTP −1.862 10.3% (1.09) 

Lagret 2.473 −13.7% ( −0.99) 1.361 −5.5% ( −0.92) −0.586 1.7% (0.57) 

Amihud 0.361 −2.0% ( −0.60) −1.127 4.6% (0.96) −3.228 9.6% ∗∗∗ (3.38) 

Zeroret 1.606 −8.9% ( −0.72) 0.244 −1.0% ( −0.33) 0.646 −1.9% ( −1.17) 

Spread −8.038 44.5% ∗ (1.78) 

Dispersion −0.591 3.3% (1.46) −1.139 4.6% ∗∗ (2.32) 

AvgVar β −0.265 1.5% (0.48) −0.364 1.5% (0.90) −0.017 0.1% (0.08) 

SUE −0.112 0.6% (0.32) −0.750 3.0% ∗ (1.66) −0.761 2.3% ∗∗∗ (3.07) 

Residual −10.349 57.4% ∗∗∗ (2.90) −16.306 65.9% ∗∗∗ (6.51) −15.992 47.6% ∗∗∗ (8.31) 

Total −18.045 ∗ 100% ( −1.95) −24.752 ∗∗∗ 100% ( −3.68) −33.587 ∗∗∗ 100% ( −6.93) 

Sample period 1990–2001 1988–2005 1988–2005 

Avg # firms/mth 428.0 440.1 601.6 

Panel E: High leverage 

Skew −0.214 0.9% (0.52) −0.168 1.0% (0.54) −0.757 3.4% ∗∗∗ (3.76) 

Coskew −0.773 3.2% (0.69) −0.886 5.3% (0.91) −1.670 7.4% ∗∗∗ (3.12) 

E(IdioSkew) −0.198 0.8% (0.18) −0.506 3.0% (0.35) −1.618 7.2% ∗∗ (2.02) 

RTP −1.142 4.8% (1.27) 

Lagret −0.847 3.5% (0.78) 0.291 −1.7% ( −0.24) −3.335 14.8% ∗∗∗ (4.63) 

Amihud 1.475 −6.1% ( −1.41) −3.326 19.8% ∗∗∗ (2.99) −2.0 0 0 8.9% ∗∗∗ (3.24) 

Zeroret 0.333 −1.4% ( −0.28) 0.243 −1.4% ( −0.72) 0.206 −0.9% ( −0.93) 

Spread −8.818 36.7% ∗∗∗ (2.73) 

Dispersion −0.722 3.0% ∗ (1.83) −1.409 8.4% ∗∗∗ (2.89) 

AvgVar β −0.4 4 4 1.8% (1.29) −0.354 2.1% (1.37) −0.115 0.5% (0.86) 

SUE −0.422 1.8% ∗∗ (1.98) −0.753 4.5% ∗∗ (2.56) −1.343 6.0% ∗∗∗ (6.78) 

Residual −12.252 51.0% ∗∗∗ (4.08) −9.957 59.2% ∗∗∗ (5.78) −11.938 52.9% ∗∗∗ (10.80) 

Total −24.024 ∗∗∗ 100% ( −2.94) −16.826 ∗∗∗ 100% ( −3.26) −22.570 ∗∗∗ 100% ( −8.27) 

Sample period 1984–2001 1983–2012 1971–2012 

Avg # firms/mth 562.6 638.7 877.8 

Panel F: Low institutional ownership 

Skew −1.880 11.2% (1.46) −1.813 8.1% ∗∗ (2.13) −1.883 8.1% ∗∗∗ (4.99) 

Coskew −2.973 17.8% (1.19) −1.606 7.1% (1.08) −1.539 6.6% ∗∗ (2.25) 

E(IdioSkew) −0.248 1.5% (0.21) −3.253 14.5% ∗∗ (2.04) −3.502 15.0% ∗∗∗ (4.79) 

RTP 1.321 −7.9% ( −0.45) 

Lagret −3.092 18.5% (1.30) −0.996 4.4% (0.56) −4.277 18.4% ∗∗∗ (4.63) 

Amihud −4.045 24.2% (0.71) −2.933 13.1% ∗∗ (1.98) −0.921 4.0% (1.53) 

Zeroret −0.832 5.0% (0.41) 0.082 −0.4% ( −0.11) 0.355 −1.5% ( −0.84) 

Spread 4.285 −25.6% ( −0.41) 

Dispersion −0.901 5.4% (0.99) 0.543 −2.4% ( −0.53) 

AvgVar β −0.182 1.1% (0.35) 0.051 −0.2% ( −0.10) −0.247 1.1% (1.51) 

SUE −2.421 14.5% (1.46) −2.243 10.0% ∗∗∗ (2.74) −1.627 7.0% ∗∗∗ (5.79) 

Residual −5.771 34.5% (1.62) −10.299 45.8% ∗∗∗ (3.91) −9.660 41.5% ∗∗∗ (5.68) 

Total −16.740 100% ( −1.48) −22.466 ∗∗∗ 100% ( −3.18) −23.300 ∗∗∗ 100% ( −6.61) 

Sample period 1990–2001 1983–2012 1979–2012 

Avg # firms/mth 131.5 145.1 743.3 

Panel G: Low B/M ratios 

Skew −0.391 2.0% (0.63) −0.574 4.3% (1.29) −1.005 4.3% ∗∗∗ (3.48) 

Coskew −1.700 8.7% (1.13) −0.035 0.3% (0.04) −0.472 2.0% (0.88) 

E(IdioSkew) −1.498 7.7% ∗ (1.75) −1.571 11.9% ∗ (1.76) −3.424 14.6% ∗∗∗ (4.58) 

RTP 0.311 −1.6% ( −0.32) 

Lagret −0.756 3.9% (0.53) 0.371 −2.8% ( −0.30) −3.242 13.8% ∗∗∗ (3.51) 

Amihud −0.349 1.8% (0.41) 0.257 −1.9% ( −0.34) −0.238 1.0% (0.28) 

Zeroret −3.171 16.2% (1.59) −0.025 0.2% (0.06) −0.166 0.7% (0.79) 

Spread 8.651 −44.2% ( −1.25) 

Dispersion −0.482 2.5% (0.40) −0.897 6.8% (1.34) 

AvgVar β −0.276 1.4% (0.53) −0.499 3.8% (1.22) −0.278 1.2% ∗ (1.66) 

SUE −0.769 3.9% ∗∗ (2.18) −0.683 5.2% ∗∗ (2.00) −1.175 5.0% ∗∗∗ (5.21) 

Residual −19.154 97.8% ∗∗∗ (3.64) −9.556 72.3% ∗∗∗ (5.49) −13.490 57.4% ∗∗∗ (10.50) 

Total −19.583 ∗∗ 100% ( −2.59) −13.212 ∗∗∗ 100% ( −2.89) −23.490 ∗∗∗ 100% ( −7.59) 

Sample period 1984–2001 1982–2012 1971–2012 

Avg # firms/mth 452.3 594.0 728.3 

Panel H: Non - NYSE listings 

Skew −2.146 6.4% ∗∗ (2.47) −0.636 3.1% ∗∗ (2.12) −2.117 10.2% ∗∗∗ (5.98) 

Coskew −1.696 5.0% (0.71) −0.750 3.6% (1.08) −0.440 2.1% (1.42) 

( continued on next page ) 
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Table 6 ( continued ) 

Candidate Model 1 Model 2 Model 3 

Coeff. Fraction t -stat Coeff. Fraction t -stat Coeff. Fraction t -stat 

E(IdioSkew) −1.292 3.8% ∗ (1.66) −2.468 11.9% ∗∗∗ (3.14) −3.010 14.5% ∗∗∗ (5.73) 

RTP −0.131 0.4% (0.11) 

Lagret 0.787 −2.3% ( −0.58) 0.310 −1.5% ( −0.31) −5.279 25.5% ∗∗∗ (5.78) 

Amihud 1.331 −4.0% ( −0.56) −2.036 9.8% ∗∗ (2.40) −0.341 1.6% (0.47) 

Zeroret 2.324 −6.9% ( −1.13) 0.741 −3.6% ( −1.10) 0.536 −2.6% ( −1.48) 

Spread −13.107 39.0% ∗∗ (2.47) 

Dispersion −3.457 10.3% ∗∗∗ (3.01) −2.089 10.1% ∗∗∗ (4.44) 

AvgVar β 0.155 −0.5% ( −0.19) −0.310 1.5% (1.38) −0.145 0.7% (1.25) 

SUE −2.033 6.1% ∗∗ (2.43) −0.834 4.0% ∗∗∗ (3.78) −1.299 6.3% ∗∗∗ (6.79) 

Residual −14.340 42.7% ∗∗∗ (4.34) −12.697 61.1% ∗∗∗ (8.76) −8.619 41.6% ∗∗∗ (7.68) 

Total −33.606 ∗∗∗ 100% ( −4.04) −20.768 ∗∗∗ 100% ( −4.99) −20.714 ∗∗∗ 100% ( −8.49) 

Sample period 1984–2001 1983–2012 1971–2012 

Avg # firms/mth 596.5 874.7 1571.4 

Panel I: Non - January months 

Skew −0.347 2.0% (1.13) −0.196 1.6% (0.81) −1.105 5.2% ∗∗∗ (6.19) 

Coskew −0.569 3.2% (1.04) −0.364 2.9% (0.49) −0.544 2.5% ∗∗∗ (2.63) 

E(IdioSkew) −0.594 3.3% (1.54) −1.143 9.1% (1.46) −3.534 16.5% ∗∗∗ (7.44) 

RTP −0.167 0.9% (0.28) 

Lagret −1.074 6.0% (0.99) −0.037 0.3% (0.04) −3.773 17.6% ∗∗∗ (5.47) 

Amihud −0.004 0.0% (0.01) −0.530 4.2% (0.65) −1.458 6.8% ∗∗∗ (3.34) 

Zeroret −0.505 2.8% (0.53) 0.128 −1.0% ( −0.41) 0.216 −1.0% ( −1.13) 

Spread −0.445 2.5% (0.15) 

Dispersion −0.628 3.5% ∗∗ (2.47) −0.791 6.3% ∗∗∗ (2.85) 

AvgVar β −0.208 1.2% (1.05) −0.192 1.5% (0.84) −0.106 0.5% (1.16) 

SUE −0.388 2.2% ∗∗ (2.57) −0.502 4.0% ∗∗ (2.58) −1.015 4.7% ∗∗∗ (7.97) 

Residual −12.858 72.3% ∗∗∗ (5.39) −8.879 71.0% ∗∗∗ (5.47) −10.091 47.1% ∗∗∗ (11.49) 

Total −17.788 ∗∗∗ 100% ( −2.91) −12.506 ∗∗∗ 100% ( −2.89) −21.408 ∗∗∗ 100% ( −9.88) 

Sample period 1984–20 0 0 1982–2012 1971–2012 

Avg # firms/mth 1523.2 1805.7 2754.7 

15 We note that measurement errors will also affect the conventional 

approach of including the candidate variables as controls in the regression 

of returns on idiosyncratic volatility. Therefore, this issue is not unique to 

our decomposition methodology. 
ownership stocks, 2–43% for low B/M stocks, 39–58% for 

non-NYSE stocks, and 28–53% for non-January months, 

compared with 29–54% for the full sample reported in 

Table 5. 

We plot in Panel B of Fig. 1 the average fraction ex- 

plained by each group of candidate variables and the av- 

erage unexplained fraction across the nine subsamples. 

The first bar chart shows that the candidate variables in 

Model 1 collectively explain an average of 42.4% of the id- 

iosyncratic volatility puzzle while the residual component 

captures the remaining 57.6%. Comparing across the three 

groups of candidate variables, we see that market friction- 

based variables combine to explain an average of 18.9% of 

the puzzle across the nine subsamples, followed by lottery 

preference-based variables which explain 15.2%, and vari- 

ables related to other explanations which explain 8.3% of 

the puzzle. 

The second and third bar charts in Panel B show that 

the total explained fractions are 39.1% and 50.3% for Mod- 

els 2 and 3, respectively, thus leaving 60.9% and 49.7% 

of the puzzle unexplained. Lottery preference-based candi- 

date variables now dominate the other candidate variables 

as they combine to explain 19.2% and 24.2% of the puzzle 

in Models 2 and 3, respectively. The contribution of mar- 

ket friction-based candidate variables is 8.3% in Model 2 

and 20.0% in Model 3. Finally, candidate variables related 

to other explanations together explain 11.7% and 6.1% of 

the puzzle in Models 2 and 3, respectively. 

Overall, the results in Table 6 show that the lottery 

preference-based and market friction-based candidate vari- 
ables also perform relatively well among the subsample of 

stocks where the idiosyncratic volatility puzzle is stronger. 

However, at least half of the puzzle still remains unex- 

plained in these subsamples. 

5. Additional robustness tests 

In this section, we show that our decomposition 

methodology is robust to using portfolios to control for 

measurement errors at the individual stock level and to al- 

lowing for nonlinear relations in the idiosyncratic volatility 

puzzle. We also show that the methodology can be used to 

evaluate explanations for other asset pricing anomalies. 

5.1. Portfolio-level analysis 

Thus far, our decomposition analysis has been based 

on cross-sectional regressions estimated at the individ- 

ual stock level. The advantage of using individual stocks, 

as opposed to portfolios, is that it is robust to data 

mining and loss of information concerns. However, this 

does raise the question about measurement errors at the 

individual stock level as both idiosyncratic volatility and 

many of the candidate variables we investigate are gener- 

ated regressors. 15 
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17 This is especially true for Amihud , which sees its contribution increase 

considerably from −2.4% in the individual stock-level analysis to 51.8% 

in the portfolio-level analysis. This large increase is partly due to a me- 
To see the effect of measurement errors, let us assume

that both idiosyncratic volatility and the candidate vari-

able are measured with error, e.g., ˜ IV OL = IV OL + u , and
˜ and id ate = Cand id ate + v , where the true variables ( IVOL

and Candidate ) are unobservable and u and v are mean-

zero measurement errors. We show in Appendix B that

the measurement error in idiosyncratic volatility has no ef-

fect on the mean or standard error of the fraction of the

idiosyncratic volatility puzzle explained by the candidate

variable (i.e., γ C 
t / γt ). However, the measurement error in

the candidate variable does lead to a downward bias in

the mean as well as the standard error of the fraction by a

factor of Var ( Cand id ate ) 
Var ( Cand id ate )+ Var (v ) , although the t -statistic for the

fraction is still unbiased. 

To address this concern about measurement errors, we

follow the literature and perform robustness checks by us-

ing idiosyncratic volatility-sorted portfolios instead of in-

dividual stocks in the decomposition analysis. The motiva-

tion for using portfolios is that if the errors in an estimated

variable are not perfectly correlated across stocks, we can

improve the precision of the estimates by grouping stocks

into portfolios because the errors will tend to offset each

other. The disadvantage of aggregating stocks into portfo-

lios, as pointed out by Ang, Liu, and Schwarz (2010) , is that

it loses information by reducing the cross-sectional varia-

tion in the estimated variable. This can lead to a mechan-

ical increase in the correlation between a candidate vari-

able and idiosyncratic volatility, which causes the fraction

of the idiosyncratic volatility puzzle explained by the can-

didate variable to be overstated. 

At the beginning of each month t , we sort individual

stocks into 200 portfolios based on their month t − 1

IVOL . 16 We compute the portfolio-level variables by taking

the value-weighted averages of the individual stock-level

variables. Month t − 1 portfolio-level IVOL and candidate

variables are then matched with value-weighted month t

DGTW-adjusted returns of each portfolio for the decompo-

sition analysis. 

Panel A of Table 7 reports the univariate decomposi-

tion results and Panel B reports the multivariate results.

We first see that the idiosyncratic volatility puzzle remains

highly significant among the idiosyncratic volatility-sorted

portfolios. The average Fama-MacBeth regression coeffi-

cient of portfolio returns on IVOL ranges from −21.080%

( t = −7.88) to −28.318% ( t = −9.07), depending on the

candidate variable examined. The results in Panel A also

show that the candidate variables that are promising in

the individual stock-level analysis tend to perform well in

the portfolio-level analysis. Specifically, among the seven

candidate variables that capture at least 10% of the puz-

zle in the individual stock-level univariate analysis ( Skew,

E(Idioskew), Maxret, RTP, Lagret, Spread , and SUE ), all but

SUE continue to explain more than 10% (in some cases

substantially so) of the puzzle in the portfolio-level uni-
16 We have also used three-digit SIC industry portfolios and found that 

on average the candidate variables explain a smaller fraction of the puz- 

zle in these industry portfolios than in the idiosyncratic volatility-sorted 

portfolios. The relation between idiosyncratic volatility and returns is in- 

significant for broader industry portfolios such as two-digit SIC or Fama- 

French 49-industry portfolios. 
variate analysis whereas the explained fraction for SUE is

only slightly below 10%. On the other hand, Coskew, Ami-

hud, Zeroret , and Dispersion , which fail to capture more

than 10% of the puzzle in the individual stock-level anal-

ysis, now each account for more than 10% of the puzzle in

the portfolio-level analysis. 17 

In Panel B, we put all the candidate variables (ex-

cept Maxret ) through our multivariate decomposition

framework. The results in Panel B show that RTP and

E(Idioskew) are the biggest contributors among the lottery

preference-based candidate variables, whereas Spread, Ami-

hud , and Lagret dominate in the market friction category.

Variables related to other explanations account for very lit-

tle of the puzzle in the portfolio-level multivariate analy-

sis. Collectively, all the candidate variables explain 78–84%

of puzzle (depending on the model) and the residual com-

ponent accounts for the remaining 16–22% of the puzzle.

Thus, although the total explained fraction in the portfolio-

level multivariate analysis is larger than that from the indi-

vidual stock-level analysis, there is still a nontrivial portion

of the idiosyncratic volatility puzzle left unexplained. 

As argued above, the overall increase in the explana-

tory power by the candidate variables in the portfolio-

level analysis can come from two sources—a reduction of

measurement errors in the candidate variables and/or a

mechanical increase in the correlation with idiosyncratic

volatility due to portfolio averaging. In the analysis de-

scribed below, we use simulations to try to disentangle

these two effects. 

Specifically, we simulate a negative idiosyncratic

volatility-return relation at the individual stock level and

introduce a noisy candidate variable, which contains a

true component (explaining r percent of the simulated

idiosyncratic volatility puzzle) and an independent noise

component. We vary the true explained fraction ( r ) from

1% to 100% at 1% intervals and the amount of signal

in the candidate variable measured by the candidate

informativeness ratio k = 

Var ( Cand id ate ) 
Var ( Cand id ate )+ Var ( Noise ) 

from 10%

to 100% also at 1% intervals (we require the candidate

variable to contain a minimum of 10% of signal). We then

apply our decomposition methodology to the simulated

individual stock sample to estimate the fraction of the

idiosyncratic volatility puzzle that is explained by the

noisy candidate variable for each of the 100 × 91 = 9 , 100

( r, k ) combinations. The estimation results show that the

asymptotic relation between the measurement error and

estimated fraction in Appendix B also holds in finite sam-

ple simulations. For example, for a candidate variable with

a true fraction ( r ) of 50% and a candidate informativeness

ratio ( k ) of 50%, the average estimated fraction from 20
chanical increase in the correlation between Amihud and IVOL as a result 

of portfolio averaging (the correlation almost doubles from 0.308 at the 

individual stock level to 0.610 at the portfolio level). In unreported re- 

sults, when we re-compute portfolio-level Amihud and IVOL using value- 

weighted daily portfolio returns instead of taking averages of the individ- 

ual stock-level Amihud and IVOL (to avoid the mechanical increase in the 

correlation), we obtain a more modest increase in the explained fraction 

to 26.9%. 
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Table 7 

Decomposing the idiosyncratic volatility puzzle: portfolio-level analysis. 

Using portfolio-level Fama-MacBeth cross-sectional regressions, the negative relation between month t − 1 idiosyncratic volatility ( IVOL ) and month t 

DGTW-adjusted returns is decomposed into a number of components each related to a candidate variable and a residual component. Panels A and B report 

the results of univariate and multivariate analyses, respectively, using idiosyncratic volatility-sorted portfolios. At the beginning of each month t , we sort 

individual stocks into 200 portfolios based on their month t − 1 IVOL. IVOL is the standard deviation of residuals from a regression of daily stock returns in 

month t − 1 on the Fama and French (1993) factors. The portfolio-level IVOL , candidate variables, and returns are computed as value-weighted averages of 

the firm-level variables. Firm-level Skew is the month t − 1 skewness of raw daily returns. Coskew is the coskewness measure in Chabi-Yo and Yang (2009) . 

E(Idioskew) is the expected idiosyncratic skewness measure in Boyer, Mitton, and Vorkink (2010) . Maxret is the maximum daily return in month t − 1. RTP 

is the retail trading proportion computed from ISSM and TAQ. Lagret is the month t − 1 return. Amihud is the illiquidity measure in Amihud (2002) . Zeroret 

is the fraction of trading days in month t − 1 with a zero return. Spread is the average daily bid-ask spread in month t − 1 from ISSM and TAQ. Dispersion 

is the dispersion in analysts’ FY1 forecasts. AvgVar β is a stock’s exposure to the average variance component of the market variance as in Chen and Petkova 

(2012) . SUE is the most recent standardized unexpected earnings. Stocks with prices less than $1 at the end of the previous month are excluded from the 

analysis. The standard errors of the fractions of the puzzle explained are determined using the multivariate delta method. Time-series averages of estimated 

coefficients ( ×100) are reported with t -statistics in parentheses. ∗ , ∗∗ , and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% levels, respectively. 

Panel A: Univariate analysis 

Candidate IVOL coeff. Candidate component Residual component 

Coeff. t -stat Coeff. Fraction t -stat Coeff. Fraction t -stat 

Skew −25.884 ∗∗∗ ( −11.95) −3.448 13.3% ∗∗∗ (6.56) −22.436 86.7% ∗∗∗ (42.71) 

Coskew −25.884 ∗∗∗ ( −11.95) −3.087 11.9% ∗∗∗ (5.09) −22.797 88.1% ∗∗∗ (37.56) 

E(Idioskew) −27.984 ∗∗∗ ( −13.22) −11.971 42.8% ∗∗∗ (15.22) −16.012 57.2% ∗∗∗ (20.36) 

Maxret −25.884 ∗∗∗ ( −11.95) −22.753 87.9% ∗∗∗ (50.08) −3.131 12.1% ∗∗∗ (6.89) 

RTP −28.318 ∗∗∗ ( −9.07) −18.820 66.5% ∗∗∗ (19.54) −9.497 33.5% ∗∗∗ (9.86) 

Lagret −25.884 ∗∗∗ ( −11.95) −6.621 25.6% ∗∗∗ (6.73) −19.263 74.4% ∗∗∗ (19.59) 

Amihud −25.988 ∗∗∗ ( −11.99) −13.474 51.8% ∗∗∗ (15.76) −12.514 48.2% ∗∗∗ (14.64) 

Zeroret −25.884 ∗∗∗ ( −11.95) −3.739 14.4% ∗∗∗ (9.04) −22.145 85.6% ∗∗∗ (53.51) 

Spread −21.080 ∗∗∗ ( −7.88) −12.441 59.0% ∗∗∗ (13.93) −8.638 41.0% ∗∗∗ (9.67) 

Dispersion −22.618 ∗∗∗ ( −8.53) −2.609 11.5% ∗∗∗ (5.50) −20.010 88.5% ∗∗∗ (42.19) 

AvgVar β −27.633 ∗∗∗ ( −13.05) −0.755 2.7% ∗∗∗ (3.01) −26.879 97.3% ∗∗∗ (107.14) 

SUE −26.873 ∗∗∗ ( −12.44) −2.635 9.8% ∗∗∗ (9.62) −24.239 90.2% ∗∗∗ (88.50) 

Average 33.1% 66.9% 

Panel B: Multivariate analysis 

Candidate Model 1 Model 2 Model 3 

Coeff. Fraction t -stat Coeff. Fraction t -stat Coeff. Fraction t -stat 

Skew −0.426 1.6% ∗ (1.81) −0.682 2.9% ∗∗∗ (2.63) −1.155 4.2% ∗∗∗ (5.29) 

Coskew −1.174 4.4% ∗∗∗ (3.00) −0.625 2.7% (1.49) −0.768 2.8% ∗∗ (2.27) 

E(IdioSkew) −1.883 7.1% ∗∗∗ (4.79) −4.729 20.3% ∗∗∗ (7.59) −5.375 19.7% ∗∗∗ (10.67) 

RTP −5.763 21.8% ∗∗∗ (7.34) 

Lagret −1.697 6.4% ∗ (1.86) −2.681 11.5% ∗∗∗ (3.49) −3.585 13.1% ∗∗∗ (5.70) 

Amihud −2.998 11.3% ∗∗∗ (6.03) −7.361 31.6% ∗∗∗ (11.00) −8.689 31.8% ∗∗∗ (15.13) 

Zeroret 0.340 −1.3% ( −1.39) −1.035 4.4% ∗∗∗ (5.09) −0.572 2.1% ∗∗∗ (3.27) 

Spread −7.553 28.5% ∗∗∗ (8.28) 

Dispersion −0.758 2.9% ∗∗∗ (4.08) −0.892 3.8% ∗∗∗ (4.41) 

AvgVar β −0.081 0.3% (0.59) −0.226 1.0% (1.33) −0.165 0.6% (1.43) 

SUE −0.363 1.4% ∗∗∗ (3.60) −0.498 2.1% ∗∗∗ (4.27) −0.866 3.2% ∗∗∗ (7.98) 

Residual −4.100 15.5% ∗∗∗ (5.27) −4.554 19.6% ∗∗∗ (5.55) −6.114 22.4% ∗∗∗ (8.63) 

Total −26.457 ∗∗∗ 100% ( −7.62) −23.282 ∗∗∗ 100% ( −8.78) −27.288 ∗∗∗ 100% ( −12.64) 

Sample period 1984–2001 1982–2012 1971–2012 
rounds of simulations is 24.9999%, almost identical to 25% 

as predicted by the asymptotic analysis in Appendix B . 18 

Next, to study the effect of portfolio averaging on 

measurement errors, we group individual stocks into 200 

portfolios based on their simulated idiosyncratic volatility. 

Portfolio-level variables are computed as value-weighted 

averages of simulated individual stock-level variables us- 

ing simulated market cap as weights. We then use the 
18 The reason we obtain such accurate results is that we perform 20 

rounds of simulations for the entire sample of firm-month observations. 

When we reduce the sample size of the simulations, the results become 

noisier. 
decomposition methodology to estimate what fraction of 

the portfolio-level idiosyncratic volatility puzzle can be ex- 

plained by the portfolio-level candidate variable. This al- 

lows us to study the tradeoff between the reduction of 

measurement errors through portfolio averaging (which 

will reduce the downward bias in the estimated frac- 

tion) and loss of information and a mechanical increase 

in the correlation between the candidate variable and 

idiosyncratic volatility (which will overstate the fraction 

explained by the candidate variable). 

Fig. 2 plots the portfolio-level simulation results for ( r, 

k ) values at 10% intervals (even though the actual simu- 

lations are done at 1% intervals). The figure shows that 
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Fig. 2. Simulated fraction for 200 portfolios. The fraction of the portfolio-level simulated idiosyncratic volatility puzzle explained by a simulated noisy 

candidate variable is plotted. Specifically, we simulate a negative idiosyncratic volatility-return relation at the individual stock level and introduce a noisy 

candidate variable, which contains a true component (explaining r percent of the simulated idiosyncratic volatility puzzle) and an independent noise 

component. We vary the true explained fraction ( r ) from 1% to 100% at 1% intervals and the amount of signal in the candidate variable measured by the 

candidate informativeness ratio k = 

Var ( Candidate ) 
Var ( Candidate )+ Var ( Noise ) 

from 10% to 100% also at 1% intervals. Individual stocks are then grouped into 200 portfolios based 

on their simulated idiosyncratic volatility, and portfolio-level variables are computed as value-weighted averages of simulated firm-level variables using 

simulated market cap as weights. For each of the 100 × 91 = 9 , 100 ( r, k ) combinations, we apply our decomposition methodology to estimate the fraction 

of the portfolio-level idiosyncratic volatility puzzle that is explained by the portfolio-level candidate variable. The figure plots the simulated fractions for 

( r, k ) values at 10% intervals due to space constraints. The heat map colors in the figure describe the absolute differences between the simulated fractions 

and the actual fraction of the idiosyncratic volatility puzzle explained by Skew (13.3%) reported in Panel A of Table 7 , where redder colors indicate smaller 

absolute differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for a given ( r, k ) combination, grouping stocks into 200

portfolios increases the estimated fraction significantly. For

example, for a candidate variable with a true fraction of

50% and a candidate informativeness ratio of 50% at the

individual stock level, the portfolio-level estimated frac-

tion is 50.8%, which is very close to the true fraction of

50% and doubles the individual stock-level estimated frac-

tion of 25%. This example suggests that grouping stocks

into 200 portfolios can significantly reduce (or even elim-

inate) the error-induced downward bias in the estimated

fractions at the individual stock level. On the other hand,

for a candidate variable that is already measured precisely

at the individual stock level, Fig. 2 shows that portfo-

lio grouping can actually overstate the true fraction ex-

plained by the candidate variable. As a case in point, con-

sider a candidate variable with a true fraction of 50%

and a candidate informativeness ratio of 70% at the in-

dividual stock level, the portfolio-level estimated fraction
is 62.4%, more than 10% higher than the true fraction

of 50%. 

To gain further insights on the measurement error is-

sue, we relate the above portfolio-level simulation results

to the actual fractions explained by the candidate vari-

ables examined in our paper. Take Skew as an example.

Skew explains an actual fraction of 13.3% of the idiosyn-

cratic volatility puzzle in the portfolio-level analysis in

Table 7 . Looking at Fig. 2 , there are many possible ( r,

k ) combinations that produce simulated fractions close to

13.3% at the portfolio level. For example, the true frac-

tion explained by Skew could be 10% and the candidate

informativeness ratio could be 50% at the individual stock

level which would give a portfolio-level simulated fraction

of 14.5%. This is fairly close to the actual fraction of 13.3%.

Another possibility is that the true fraction is 50% and

the candidate informativeness ratio is 10%—this would give

a portfolio-level simulated fraction of 14.4%. These two
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possibilities are not the only close matches. The heat map 

colors in Fig. 2 describe the absolute difference between 

the simulated fractions and Skew ’s actual fraction of 13.3%, 

where redder colors denote smaller absolute differences. 

For a given candidate informativeness ratio between 

10–100%, we compute a precision-weighted true fraction 

explained by Skew , where precision is defined as the re- 

ciprocal of the squared difference between the actual frac- 

tion and the simulated fraction. Table 8 reports that the av- 

erage precision-weighted true fraction across all candidate 

informativeness ratios between 10–100%, assuming that we 

have a diffuse prior about the amount of noise in Skew at 

the individual stock level, is 12.1%. This is very close to the 

actual explained fraction of 13.3%. On the other hand, if 

we assume that Skew is measured precisely (imprecisely) 

with a candidate informativeness ratio between 50–100% 

(10–49%), the average precision-weighted true fraction is 

considerably lower (higher) at 6.7% (18.9%), which suggests 

that the actual fraction of 13.3% is overstating (understat- 

ing) the true fraction explained. 

The results for the other candidate variables, also re- 

ported in Table 8 , paint a similar picture. The average 

precision-weighted true fraction for a diffuse-prior candi- 

date variable (10–100% candidate informativeness ratio) is 

typically very close to the actual explained fraction (31.5% 

versus 33.1%, averaged across all 12 candidate variables). 

On the other hand, the average precision-weighted true 

fraction for a clean candidate variable (50–100% candidate 

informativeness ratio) is significantly lower than the actual 

fraction (24.3% versus 33.1%, averaged across all 12 candi- 

date variables), and that for a noisy candidate variable (10–

49% candidate informativeness ratio) is significantly higher 

than the actual fraction (40.6% vs. 33.1%, averaged across 

all 12 candidate variables). 19 Overall, these results suggest 

that when one is agnostic about the amount of noise in 

a candidate variable, grouping stocks into 200 portfolios 

comes very close to uncovering the true fraction explained 

by the candidate variable. On the other hand, if one is 

confident that the candidate variable is measured precisely 

(imprecisely) at the individual stock level, then grouping 

stocks into 200 portfolios is likely to overstate (understate) 

the true fraction explained by the candidate variable. 

We also perform the simulation analysis by grouping 

stocks into smaller numbers of portfolios (100, 50, and 

25 portfolios) and report their results as well as those 

from the individual stock-level analysis in Table 8 . We see 

that while the actual fraction explained by a candidate 

variable goes up when we group stocks into fewer port- 

folios (from an average of 33.1% across all 12 candidate 

variables for 200 portfolios to 54.5% for 25 portfolios), the 

precision-weighted true fraction remains very stable when 

we reduce the number of portfolios. It varies within a 

tight range from 24 to 29% for the clean scenario, 32–36% 

for the diffuse-prior scenario, and 41–45% for the noisy 

scenario. These results suggest that grouping stocks into 

a smaller number of portfolios may not necessarily lead 

to a further reduction in the measurement errors. Instead, 
19 The precision-weighted fractions for the clean and noisy scenarios 

can, in essence, be viewed as providing a confidence interval for the true 

fraction explained by a candidate variable. 
it increases the likelihood that the estimated fraction 

will overstate the true fraction explained by a candidate 

variable. We therefore conclude that grouping individual 

stocks into 200 portfolios achieves the appropriate balance 

between concerns of measurement errors in the candidate 

variables versus loss of information and overstating the 

explained fractions by the candidate variables (especially 

when one is agnostic about the amount of noise in the 

candidate variables). 

In sum, the analysis in this subsection confirms that our 

main findings are robust to using idiosyncratic volatility- 

sorted portfolios to mitigate the measurement errors at the 

individual stock level. It also shows that our decomposition 

methodology can be applied to characteristic-sorted port- 

folios in addition to individual stocks. 

5.2. Nonlinear relations 

To be consistent with existing literature, we adopt sim- 

ple linear specifications in Eqs. (1) and (2) to study to 

what extent different candidate variables can explain the 

idiosyncratic volatility puzzle. However, our decomposition 

methodology can easily accommodate nonlinear relations 

in the idiosyncratic volatility puzzle. 

One possible source of nonlinearity is in the relation 

between idiosyncratic volatility and returns. Previous stud- 

ies such as Ang, Hodrick, Xing, and Zhang (2006) argue 

that much of the idiosyncratic volatility puzzle is driven 

by high idiosyncratic volatility stocks earning low returns. 

To investigate this possibility, we define a dummy vari- 

able, HIGHIVOL , which equals one when IVOL belongs to 

the top decile in month t − 1 and zero otherwise. Panel A 

of Table 9 confirms that there is indeed a negative and sig- 

nificant relation between HIGHIVOL and subsequent stock 

returns with the average Fama-MacBeth regression coef- 

ficient on HIGHIVOL ranging from −0.713% ( t = −3.71) 

to −1.155% ( t = −5.40). We then use our decomposition 

methodology to study the HIGHIVOL -return relation. We 

find that most of the candidate variables that prove useful 

in explaining the linear IVOL -return relation also capture 

sizable fractions of the relation between HIGHIVOL and re- 

turns in the univariate analysis. The multivariate analysis 

in Panel B of Table 9 shows that all the candidate variables 

(excluding Maxret ) combine to explain 25–48% of the neg- 

ative relation between HIGHIVOL and returns, thus leaving 

more than 50% of the relation unexplained. This finding is 

again in line with the results from our multivariate decom- 

position of the linear IVOL -return relation. 

Another source of nonlinearity comes from potential 

nonlinear relations between idiosyncratic volatility and the 

candidate variables. For example, perhaps only the extreme 

values of the candidate variables are useful in explain- 

ing the HIGHIVOL -return relation. To investigate this, we 

replace a candidate variable with a dummy that equals 

one when the candidate variable belongs to the extreme 

decile and zero otherwise. Panel C of Table 9 shows that 

this treatment leaves the univariate contribution largely 

unaffected for most of the candidate variables, except for 

Coskew whose explained fraction improves to 23.3% from 

2.5% in Panel A. Panel D of Table 9 shows that together, 

these binary candidate variables (again excluding Maxret ) 
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Table 8 

Precision-weighted true fractions from simulation analysis. 

A precision-weighted true explained fraction is computed for each candidate variable based on the simulation analysis. Specifically, we simulate a negative idiosyncratic volatility-return relation at the individual 

stock level and introduce a noisy candidate variable, which contains a true component (explaining r percent of the simulated idiosyncratic volatility puzzle) and an independent noise component. We vary the 

true explained fraction ( r ) from 1% to 100% at 1% intervals and the amount of signal in the candidate variable measured by the candidate informativeness ratio k = 

Var ( Candidate ) 
Var ( Candidate )+ Var ( Noise ) 

from 10% to 100% also 

at 1% intervals. For each of the 100 × 91 = 9 , 100 ( r, k ) combinations, we then apply our decomposition methodology to estimate the fraction of the simulated idiosyncratic volatility puzzle that is explained 

by the noisy candidate variables for the simulated individual stock sample as well as for 20 0, 10 0, 50, and 25 portfolios sorted on simulated idiosyncratic volatility. The actual true fraction explained by a 

candidate variable at each level of portfolio aggregation is then matched to the corresponding simulated explained fraction to compute the precision-weighted true fraction explained by the candidate variables, 

where precision is defined as the reciprocal of the squared difference between the actual fraction and the simulated fraction. Three versions of the precision-weighted true fraction are reported: a clean version 

(50–100% candidate informativeness ratio), a diffuse-prior version (10–100% candidate informativeness ratio), and a noisy version (10–49% candidate informativeness ratio). Firm-level Skew is the month t − 1 

skewness of raw daily returns. Coskew is the coskewness measure in Chabi-Yo and Yang (2009) . E(Idioskew) is the expected idiosyncratic skewness measure in Boyer, Mitton, and Vorkink (2010) . Maxret is the 

maximum daily return in month t − 1. RTP is the retail trading proportion computed from ISSM and TAQ. Lagret is the month t − 1 return. Amihud is the illiquidity measure in Amihud (2002) . Zeroret is the 

fraction of trading days in month t − 1 with a zero return. Spread is the average daily bid-ask spread in month t − 1 from ISSM and TAQ. Dispersion is the dispersion in analysts’ FY1 forecasts. AvgVar β is a 

stock’s exposure to the average variance component of the market variance as in Chen and Petkova (2012) . SUE is the most recent standardized unexpected earnings. Portfolio-level variables are computed as 

value-weighted averages of the firm-level variables. 

Candidate Precision-weighted true fraction (%) 

Actual fraction explained (%) If informativeness ratio is 50–100% 

(clean candidate) 

If informativeness ratio is 10–100% 

(diffuse-prior candidate) 

If informativeness ratio is 10–49% 

(noisy candidate) 

Firm 200port 100port 50port 25port Firm 200port 100port 50port 25port Firm 200port 100port 50port 25port Firm 200port 100port 50port 25port 

Skew 10 .3 13 .3 19 .7 26 .7 39 .0 14 .4 6 .7 7 .9 8 .5 10 .4 26 .6 12 .1 14 .2 15 .3 18 .6 42 .2 18 .9 22 .3 23 .9 29 .0 

Coskew 1 .9 11 .9 20 .4 30 .3 38 .3 2 .8 5 .9 8 .2 10 .0 10 .1 5 .0 10 .6 14 .8 18 .1 18 .0 7 .9 16 .7 23 .3 28 .4 28 .2 

E(Idioskew) 14 .7 42 .8 48 .6 52 .0 59 .1 20 .5 27 .1 26 .0 22 .5 21 .4 35 .6 43 .6 42 .3 38 .2 36 .8 54 .8 64 .5 63 .2 58 .3 56 .5 

Maxret 112 .0 87 .9 91 .7 94 .9 97 .8 69 .4 84 .3 85 .4 86 .7 87 .6 63 .4 76 .4 77 .7 79 .0 80 .0 55 .7 66 .4 67 .8 69 .2 70 .3 

RTP 22 .3 66 .5 69 .4 80 .2 89 .3 31 .0 54 .6 49 .5 58 .5 71 .4 47 .1 64 .6 62 .1 67 .5 73 .5 67 .7 77 .3 78 .1 78 .9 76 .3 

Lagret 33 .7 25 .6 27 .2 35 .3 49 .0 46 .8 13 .9 11 .6 12 .3 15 .0 59 .0 25 .7 21 .2 22 .5 27 .2 74 .6 40 .7 33 .4 35 .4 42 .8 

Amihud −2 .4 51 .8 59 .8 73 .6 84 .5 9 .9 36 .0 37 .0 46 .3 56 .9 12 .9 52 .0 53 .1 60 .4 67 .1 16 .8 72 .5 73 .6 78 .3 80 .2 

Zeroret 0 .9 14 .4 19 .5 25 .3 34 .2 1 .4 7 .2 7 .8 8 .1 8 .6 2 .5 13 .2 14 .0 14 .3 15 .2 3 .8 20 .7 22 .0 22 .2 23 .6 

Spread 30 .4 59 .0 65 .8 75 .4 82 .0 42 .2 44 .3 44 .4 49 .3 50 .9 56 .1 58 .4 58 .7 62 .3 63 .7 73 .8 76 .4 77 .1 78 .9 80 .1 

Dispersion 5 .3 11 .5 15 .8 29 .6 39 .3 7 .5 5 .7 6 .1 9 .7 10 .5 13 .8 10 .2 11 .0 17 .5 18 .8 21 .9 16 .1 17 .1 27 .5 29 .4 

AvgVar β 1 .0 2 .7 5 .0 9 .0 14 .4 1 .6 1 .4 1 .9 3 .0 3 .5 2 .7 2 .2 3 .0 4 .3 4 .9 4 .2 3 .3 4 .4 5 .9 6 .7 

SUE 10 .9 9 .8 13 .8 18 .7 27 .1 15 .2 4 .9 5 .4 5 .6 6 .3 28 .0 8 .6 9 .4 9 .7 10 .8 44 .3 13 .4 14 .6 15 .0 16 .6 

Average 20 .1 33 .1 38 .1 45 .9 54 .5 21 .9 24 .3 24 .3 26 .7 29 .4 29 .4 31 .5 31 .8 34 .1 36 .2 39 .0 40 .6 41 .4 43 .5 45 .0 
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explain 42–56% of the HIGHIVOL -return relation, compared 

with 25–48% of the relation explained in Panel B. Still, 

a sizable 44–58% of the HIGHIVOL -return relation remains 

unexplained. 

Overall, the analysis above shows that our results are 

robust to modifying the decomposition methodology to 

accommodate nonlinearity in the idiosyncratic volatility 

puzzle. 20 
20 We have also experimented with other nonlinear specifications, 

which include using log IVOL , winsorized IVOL , decile ranks of IVOL , and 

Table 9 

Decomposing the idiosyncratic volatility puzzle: nonlinear relations. 

Using firm-level Fama-MacBeth cross-sectional regressions, the negative relatio

month t − 1 ( HIGHIVOL ) and month t DGTW-adjusted returns is decomposed in

residual component. HIGHIVOL equals one when IVOL belongs to the highest decil

univariate and multivariate analyses, respectively, using HIGHIVOL and the origina

multivariate analyses, respectively, replacing each candidate variable with a dumm

highest decile (lowest decile for SUE ) and zero otherwise. IVOL is the standard de

1 on the Fama and French (1993) factors. Skew is the month t − 1 skewness of ra

(2009) . E(Idioskew) is the expected idiosyncratic skewness measure in Boyer, Mi

t − 1. RTP is the retail trading proportion computed from ISSM and TAQ. Lagret 

(2002) . Zeroret is the fraction of trading days in month t − 1 with a zero return. 

TAQ. Dispersion is the dispersion in analysts’ FY1 forecasts. AvgVar β is a stock’s e

Chen and Petkova (2012) . SUE is the most recent standardized unexpected earnin

excluded from the analysis. The standard errors of the fractions of the puzzle ex

averages of estimated coefficients ( ×100) are reported with t -statistics in parent

levels, respectively. 

Panel A: Univariate analysis using HIGHIVOL 

Candidate HIGHIVOL coeff. Candidate c

Coeff. t -stat Coeff. Fracti

Skew −0.909 ∗∗∗ ( −9.51) −0.069 7.6% ∗

Coskew −0.904 ∗∗∗ ( −9.44) −0.023 2.5% ∗

E(Idioskew) −1.092 ∗∗∗ ( −10.71) −0.178 16.3%

Maxret −0.904 ∗∗∗ ( −9.44) −0.785 86.9%

RTP −1.155 ∗∗∗ ( −5.40) −0.259 22.4%

Lagret −0.904 ∗∗∗ ( −9.44) −0.242 26.8%

Amihud −0.929 ∗∗∗ ( −9.42) 0.005 −0.5%

Zeroret −0.904 ∗∗∗ ( −9.44) 0.001 −0.2%

Spread −1.057 ∗∗∗ ( −6.37) −0.327 30.9%

Dispersion −0.713 ∗∗∗ ( −3.71) −0.038 5.3% ∗

AvgVar β −0.909 ∗∗∗ ( −8.73) −0.010 1.1% ∗∗

SUE −0.912 ∗∗∗ ( −7.98) −0.076 8.3% ∗

Average 17.3%

Panel B: Multivariate analysis using HIGHIVOL 

Candidate Model 1 

Coeff. Fraction t -stat Coeff. 

Skew −0.035 2.2% ∗ (1.69) −0.006 

Coskew −0.149 9.4% ∗ (1.86) −0.069 

E(IdioSkew) 0.012 −0.8% ( −0.36) −0.066 

RTP 0.031 −2.0% ( −0.52) 

Lagret −0.032 2.0% (0.39) 0.009 

Amihud −0.057 3.6% (0.84) −0.034 

Zeroret 0.002 −0.1% ( −0.05) 0.006 

Spread −0.118 7.5% (0.80) 

Dispersion −0.020 1.3% (1.01) −0.025 

AvgVar β −0.017 1.1% (0.95) −0.030 

SUE −0.008 0.5% (0.79) −0.021 

Residual −1.188 75.3% ∗∗∗ (7.52) −0.713 

Total −1.578 100% ( −3.71) −0.947 

Sample period 1984–2001 1982–2012 

Avg # firms/mth 1524.4 1806.0 
5.3. Decomposing other anomalies 

In this paper, we treat the negative idiosyncratic 

volatility-return relation as a puzzle and use the candidate 

variables proposed in the literature (e.g., maximum daily 

return) to try to explain the puzzle. In this subsection, to 

show the flexibility of our methodology, we turn the tables 

and use idiosyncratic volatility as a candidate variable to 
adding squared terms of the candidate variables, and found very similar 

results. To conserve space, they are not reported. 

n between a dummy variable for having high idiosyncratic volatility in 

to a number of components each related to a candidate variable and a 

e in month t − 1 and zero otherwise. Panels A and B report the results of 

l candidate variables. Panels C and D report the results of univariate and 

y variable which equals one when the candidate variable belongs to the 

viation of residuals from a regression of daily stock returns in month t −
w daily returns. Coskew is the coskewness measure in Chabi-Yo and Yang 

tton, and Vorkink (2010) . Maxret is the maximum daily return in month 

is the month t − 1 return. Amihud is the illiquidity measure in Amihud 

Spread is the average daily bid-ask spread in month t − 1 from ISSM and 

xposure to the average variance component of the market variance as in 

gs. Stocks with prices less than $1 at the end of the previous month are 

plained are determined using the multivariate delta method. Time-series 

heses. ∗ , ∗∗ , and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% 

omponent Residual component 

on t -stat Coeff. Fraction t -stat 

∗∗ (6.26) −0.840 92.4% ∗∗∗ (76.19) 
∗∗ (3.00) −0.881 97.5% ∗∗∗ (117.03) 

 

∗∗∗ (7.44) −0.914 83.7% ∗∗∗ (38.11) 

 

∗∗∗ (17.98) −0.119 13.1% ∗∗∗ (2.72) 

 

∗∗∗ (4.82) −0.896 77.6% ∗∗∗ (16.68) 

 

∗∗∗ (6.79) −0.662 73.2% ∗∗∗ (18.54) 

 ( −0.18) −0.933 100% ∗∗∗ (36.47) 

 ( −0.20) −0.905 100% ∗∗∗ (126.29) 

 

∗∗∗ (5.00) −0.730 69.1% ∗∗∗ (11.17) 
∗ (2.05) −0.675 94.7% ∗∗∗ (36.39) 

(2.08) −0.899 98.9% ∗∗∗ (191.37) 
∗∗ (7.79) −0.836 91.7% ∗∗∗ (85.77) 

 82.7% 

Model 2 Model 3 

Fraction t -stat Coeff. Fraction t -stat 

0.6% (0.53) −0.051 4.9% ∗∗∗ (6.75) 

7.3% ∗ (1.94) −0.026 2.5% ∗∗∗ (3.35) 

7.0% ∗ (1.87) −0.158 15.0% ∗∗∗ (7.55) 

−1.0% ( −0.14) −0.210 20.0% ∗∗∗ (5.87) 

3.5% (0.51) −0.049 4.7% ∗ (1.94) 

−0.7% ( −0.82) 0.025 −2.3% ∗∗∗ ( −3.16) 

2.6% (1.50) 

3.1% ∗ (1.68) −0.007 0.7% (1.63) 

2.2% ∗∗∗ (3.24) −0.032 3.1% ∗∗∗ (8.06) 

75.3% ∗∗∗ (6.83) −0.541 51.6% ∗∗∗ (13.07) 

100% ( −4.07) −1.050 100% ( −9.61) 

1971–2012 

2752.4 

(continued on next page) 
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Table 9 

Continued. 

Panel C: Univariate analysis using HIGHIVOL and dummy candidate variables 

Candidate HIGHIVOL coeff. Candidate component Residual component 

Coeff. t -stat Coeff. Fraction t -stat Coeff. Fraction t -stat 

High Skew −0.909 ∗∗∗ ( −9.51) −0.071 7.8% ∗∗∗ (6.61) −0.838 92.2% ∗∗∗ (78.57) 

High Coskew −0.904 ∗∗∗ ( −9.44) −0.210 23.3% ∗∗∗ (11.49) −0.693 76.7% ∗∗∗ (37.87) 

High E(Idioskew) −1.092 ∗∗∗ ( −10.71) −0.188 17.2% ∗∗∗ (8.32) −0.904 82.8% ∗∗∗ (39.99) 

High Maxret −0.904 ∗∗∗ ( −9.44) −0.799 88.4% ∗∗∗ (19.09) −0.105 11.6% ∗∗ (2.51) 

High RTP −1.155 ∗∗∗ ( −5.40) −0.128 11.1% ∗∗∗ (2.91) −1.027 88.9% ∗∗∗ (23.32) 

High Lagret −0.904 ∗∗∗ ( −9.44) −0.278 30.8% ∗∗∗ (8.88) −0.626 69.2% ∗∗∗ (19.97) 

High Amihud −0.929 ∗∗∗ ( −9.42) −0.045 4.8% (1.58) −0.884 95.2% ∗∗∗ (31.29) 

High Zeroret −0.904 ∗∗∗ ( −9.44) 0.011 −1.2% ∗ ( −1.73) −0.915 101% ∗∗∗ (142.66) 

High Spread −1.057 ∗∗∗ ( −6.37) −0.252 23.8% ∗∗∗ (4.99) −0.805 76.2% ∗∗∗ (15.96) 

High Dispersion −0.745 ∗∗∗ ( −3.93) −0.082 11.0% ∗∗∗ (3.10) −0.663 89.0% ∗∗∗ (24.98) 

High AvgVar β −0.909 ∗∗∗ ( −8.73) −0.014 1.6% ∗ (1.71) −0.894 98.4% ∗∗∗ (107.11) 

Low SUE −0.912 ∗∗∗ ( −7.98) −0.045 4.9% ∗∗∗ (7.51) −0.867 95.1% ∗∗∗ (145.55) 

Average 18.6% 81.4% 

Panel D: Multivariate analysis using HIGHIVOL and dummy candidate variables 

Candidate Model 1 Model 2 Model 3 

Coeff. Fraction t -stat Coeff. Fraction t -stat Coeff. Fraction t -stat 

High Skew −0.032 2.0% ∗ (1.89) −0.007 0.7% (0.69) −0.040 3.8% ∗∗∗ (6.61) 

High Coskew −0.198 12.2% ∗∗∗ (2.72) −0.119 12.2% ∗∗∗ (3.18) −0.146 13.9% ∗∗∗ (9.24) 

High E(Idioskew) −0.091 5.6% ∗∗ (2.50) −0.139 14.3% ∗∗∗ (2.94) −0.113 10.8% ∗∗∗ (7.95) 

High RTP −0.031 1.9% (0.68) 

High Lagret −0.106 6.5% ∗ (1.65) −0.099 10.1% ∗∗ (2.47) −0.187 17.8% ∗∗∗ (7.71) 

High Amihud −0.048 2.9% (0.91) 0.011 −1.1% ( −0.18) −0.091 8.7% ∗∗∗ (3.47) 

High Zeroret −0.084 5.2% (0.98) −0.002 0.2% (0.34) 0.012 −1.1% ∗∗ ( −2.45) 

High Spread −0.023 1.4% (0.16) 

High Dispersion −0.068 4.2% ∗∗ (2.45) −0.069 7.1% ∗∗∗ (3.07) 

High AvgVar β 0.001 −0.1% ( −0.06) −0.013 1.3% (1.00) −0.005 0.4% (1.08) 

Low SUE −0.012 0.8% (0.95) −0.020 2.0% ∗∗∗ (2.68) −0.020 1.9% ∗∗∗ (7.50) 

Residual −0.935 57.5% ∗∗∗ (5.35) −0.519 53.1% ∗∗∗ (6.00) −0.459 43.8% ∗∗∗ (12.08) 

Total −1.627 100% ( −3.94) −0.977 100% ( −4.26) −1.050 100% ( −9.60) 

Sample period 1984–2001 1982–2012 1971–2012 

Avg # firms/mth 1530.6 1813.0 2752.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

explain the relations between returns and variables such

as maximum daily return and past earnings surprise be-

cause the return predictability of these variables has also

been cited in the literature as being anomalous relative to

traditional asset pricing theories. 

For brevity, we focus our analysis on three anomaly

variables—Maxret, Lagret , and SUE —and use IVOL as the

only candidate variable, although the analysis can be eas-

ily extended to other anomaly variables or to include other

candidate explanatory variables. 

Table 10 shows that IVOL , when considered alone, ex-

plains 67.5% of the negative relation between Maxret and

subsequent returns. This number, though smaller than the

fraction of the IVOL puzzle explained by Maxret (112.0%),

is still impressive and identifies idiosyncratic volatility as

a major contributor to the maximum daily return puzzle.

In contrast, IVOL can only explain 5.9% of the one-month

return reversal effect based on Lagret and 7.3% of the post-

earnings announcement drift based on SUE , compared to

33.7% and 10.9% of the IVOL puzzle explained by Lagret and

SUE , respectively. In short, the above results show that our

decomposition methodology can be used to evaluate expla-

nations for other asset pricing anomalies. 
6. Conclusion 

In this paper, we propose a simple methodology to ex-

amine a large number of explanations that have been pro-

posed in the literature for the negative relation between

idiosyncratic volatility and subsequent stock returns (the

idiosyncratic volatility puzzle). The main advantage of our

approach is that it allows us to quantify the contribution of

each explanation either by itself or when evaluated against

competing explanations. 

We find that, surprisingly, many existing explanations

explain less than 10% of the idiosyncratic volatility puzzle.

On the other hand, explanations based on investors’ lottery

preferences and market frictions show some promise in

explaining the puzzle. Taken together, however, all existing

explanations still leave a sizable portion of the puzzle

unexplained. Our main findings are robust to subsample

analysis, using portfolios instead of individual stocks,

and potential nonlinearity in the idiosyncratic volatility

puzzle. Finally, our decomposition methodology can also

be applied to evaluate competing explanations for other

asset pricing anomalies. 
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Table 10 

Decomposing other anomalies. 

Using firm-level Fama-MacBeth cross-sectional regressions, the relations between three anomaly variables ( Maxret, Lagret , and SUE ) and DGTW-adjusted 

returns are decomposed into a component that is related to IVOL and a residual component. Stage 1 regresses month t returns on an anomaly variable. 

Stage 2 adds IVOL as the candidate variable to the regression. Stage 3 regresses the anomaly variable on IVOL to decompose the anomaly variable into two 

orthogonal components. In Stage 4, the coefficient on the anomaly variable from Stage 1 is decomposed into a component that is related to IVOL and a 

residual component. The time-series average of the IVOL component divided by the time-series average of the Stage 1 coefficient on the anomaly variable 

then measures the fraction of the anomaly explained by IVOL , and the average residual component divided by the average Stage 1 coefficient measures the 

fraction of the anomaly left unexplained by IVOL. IVOL is the standard deviation of residuals from a regression of daily stock returns in month t − 1 on 

the Fama and French (1993) factors. Maxret is the maximum daily return in month t − 1, Lagret is the month t − 1 return, and SUE is the most recent 

standardized unexpected earnings. Stocks with prices less than $1 at the end of the previous month are excluded from the analysis. The standard errors 

of the fractions of the anomaly explained are determined using the multivariate delta method. Time-series averages of estimated coefficients ( ×100) are 

reported with t -statistics in parentheses. ∗ , ∗∗ , and ∗∗∗ denote statistical significance at the 10%, 5%, and 1% levels, respectively. 

Stage Description Variable Anomaly variable 

Maxret Lagret SUE 

1 DGTW-adj ret on anomaly Intercept 0.347 ∗∗∗ (8.87) −0.033 ( −1.15) −0.100 ∗∗∗ ( −4.79) 

Anomaly −6.421 ∗∗∗ ( −12.02) −4.324 ∗∗∗ ( −13.64) 0.115 ∗∗∗ (18.06) 

2 Add IVOL Intercept 0.270 ∗∗∗ (4.74) 0.244 ∗∗∗ (4.27) 0.285 ∗∗∗ (4.75) 

Anomaly −9.352 ∗∗∗ ( −10.20) −4.467 ∗∗∗ ( −13.72) 0.108 ∗∗∗ (17.21) 

IVOL 10.740 ∗∗∗ (2.85) −10.831 ∗∗∗ ( −4.88) −15.669 ∗∗∗ ( −7.01) 

3 Anomaly variable on IVOL Intercept −0.910 ∗∗∗ ( −25.80) −2.460 ∗∗∗ ( −15.11) 61.341 ∗∗∗ (22.99) 

IVOL 304.335 ∗∗∗ (202.66) 162.213 ∗∗∗ (20.49) −1559.1 ∗∗∗ ( −34.87) 

Avg adj R 2 77.9% 8.2% 1.2% 

4 Decompose Stage 1 anomaly coefficient IVOL −4.337 −0.253 0.008 

67.5% ∗∗∗ (18.05) 5.9% ∗∗∗ (3.26) 7.3% ∗∗∗ (4.94) 

Residual −2.084 −4.071 0.106 

32.5% ∗∗∗ (8.67) 94.1% ∗∗∗ (52.31) 92.7% ∗∗∗ (62.34) 

Total −6.421 ∗∗∗ ( −12.02) −4.324 ∗∗∗ ( −13.64) 0.115 ∗∗∗ (18.06) 

100% 100% 100% 

Sample period 1963–2012 1963–2012 1971–2012 

Avg # firms/mth 3580.5 3580.4 3472.3 

 

Appendix A. The relation to the conventional approach 

In this appendix, we demonstrate the relation between 

our decomposition methodology in Eq. (3) and the con- 

ventional approach of regressing returns on idiosyncratic 

volatility and a candidate variable in Eq. (10) . Specifically, 

for each month t , we can substitute Eq. (2) into Eq. (10) 

and obtain: 

R it = ˜ αt + ˜ γ R 
t ( a t−1 + μit−1 + δt−1 Cand id at e it−1 ) 

+ ˜ γ C 
t Cand id at e it−1 + ˜ ε it 

= ˜ αt + ˜ γ R 
t ( a t−1 + μit−1 ) + ( ̃  γ C 

t 

+ δt−1 ̃  γ R 
t ) Cand id at e it−1 + ˜ ε it 

= ˜ αt + ˜ γ R 
t ( a t−1 + μit−1 ) + γ̄ C 

t Cand id at e it−1 + ˜ ε it , (11) 

where ˜ γ C 
t , which equals ˜ γ C 

t + δt−1 ̃  γ R 
t , is identical to the 

coefficient of regressing returns on the candidate variable 

alone because ( a t−1 + μit−1 ) and Cand id at e it−1 are uncor- 

related by construction. We can then rewrite γ C 
t from 

Eq. (3) as follows: 

γ C 
t = 

Cov [ R it , δt−1 Cand id at e it−1 ] 

Var [ IV O L it−1 ] 

= 

Cov [ R it , δt−1 Cand id at e it−1 ] 

Var [ δt−1 Cand id at e it−1 ] 
× Var [ δt−1 Cand id at e it−1 ] 

Var [ IV O L it−1 ] 

= 

γ̄ C 
t 

δt−1 

× Var [ δt−1 Cand id at e it−1 ] 

Var [ IV O L it−1 ] 

= 

(
˜ γ C 

t 

δt−1 

+ ˜ γ R 
t 

)
× Var [ δt−1 Cand id at e it−1 ] 

Var [ IV O L it−1 ] 
. (12) 
To show the relation more generally for k candidate 

variables, we simplify the notation by denoting IV O L it−1 as 

V and R it as R , both are n × 1 vectors where n is the num-

ber of firms in the month t cross-sectional regression. We 

also denote an n × 1 vector of ones by ι and we can now 

rewrite Eq. (1) as: 

R = ια + V γ + ε . (13) 

Next, we regress V on ι and the n × k matrix of k can- 

didate variables (measured contemporaneously with V in 

month t − 1) denoted by C = ( C 1 · · · C k ) , where C j is 

an n × 1 vector: 

V = ιa + C δ
C + μ, (14) 

where δC is a k × 1 vector of coefficients. In the last step, 

we decompose the idiosyncratic volatility-return relation γ
into k components each related to a candidate variable and 

a residual component: 

γ = 

(
v ′ v 

)−1 
V 

′ r 

= 

(
v ′ v 

)−1 
(

C δ
C + ιa + μ

)′ 
r 

= 

(
v ′ v 

)−1 
(

C δ
C 
)′ 

r + 

(
v ′ v 

)−1 
( ιa + μ) 

′ r , 

(15) 

where v and r (both n × 1 vectors) are demeaned ver- 

sions of V and R , respectively. The first term in the last 

line of Eq. (15) represents the combined contribution of all 

k candidate variables and the second term represents the 

unexplained component of the idiosyncratic volatility puz- 

zle. The contribution of the j th candidate variable is then 

γ C 
j 

= (v ′ v ) −1 
(C j δ

C 
j 
) 
′ 
r . 
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Now, take the conventional approach of regressing R on

V and C : 

R = ι ˜ α + V ̃  γ R + C ̃

 γC + ̃

 ε . (16)

We can rewrite Eq. (16) by substituting in Eq. (14) as fol-

lows: 

R = ι ˜ α + ( ιa + C δ
C + μ) ̃  γ R + C ̃

 γC + ̃

 ε 

= ι ˜ α + ( ιa + μ) ̃  γ R + C ( ̃  γC + δ
C 

˜ γ R ) + ̃

 ε . (17)

Because C and ( ιa + μ) are uncorrelated by construction,

the coefficient on the j th candidate variable ( ̃  γ C 
j 

+ δC 
j 

˜ γ R )

should be identical to the slope coefficient when R is re-

gressed on the regression residual of C j on the other k −1

candidate variables. Specifically, we define an n × ( k + 1)

matrix C = ( ι C 1 · · · C k ) , an ( k + 1) × ( k + 1) ma-

trix J which is an identity matrix except that the ( j + 1)th

diagonal term is set to zero, and θ which is the ( k + 1) ×
1 vector of coefficients from regressing C j on C J . Then we

have: (
˜ γ C 

j + δC 
j ˜ γ

R 
)

= 

[ (
C j − C J θ

)′ (
C j − C J θ

)] −1 (
C j − C J θ

)′ 
r (

˜ γ C 
j + δC 

j ˜ γ
R 
)

= 

[ (
C j − C J θ

)′ (
C j − C J θ

)] −1 [ 
C 

′ 
j r −

(
C J θ

)′ 
r 

]
C 

′ 
j r = 

[ (
C j − C J θ

)′ (
C j − C J θ

)] (
˜ γ C 

j + δC 
j ˜ γ

R 
)

+ 

(
C J θ

)′ 
r . (18)

We can then rewrite Eq. (15) to give us the relation be-

tween γ C 
j 

(the contribution of the j th candidate variable to

the idiosyncratic volatility puzzle) and ˜ γ C 
j 

[the coefficient

on the j th candidate variable in Eq. (16) ]: 

γ C 
j = 

(
v ′ v 

)−1 (
C j δ

C 
j 

)′ 
r 

= 

(
v ′ v 

)−1 
δC 

j C j 

′ 
r 

= 

(
v ′ v 

)−1 
δC 

j 

{ [ (
C j − C J θ

)′ (
C j − C J θ

)] 
×
(

˜ γ C 
j + δC 

j ˜ γ
R 
)

+ 

(
C J θ

)′ 
r 

} 

. 

(19)

When k = 1, the above relation collapses to

(v ′ v ) −1 
δC 

j 
( C j 

′ C j )( ̃  γ j C + δC 
j 

˜ γ R ) , which is the matrix form of

Eq. (12) . 

Appendix B. The effect of measurement errors 

In this appendix, we analyze the effect of measurement

errors on our decomposition methodology. Our decomposi-

tion methodology is based on the following two equations:

R it = αt + γt IV O L it−1 + ε it , (20)

IV O L it−1 = a t−1 + δt−1 C it−1 + μit−1 . (21)

For brevity, we denote Cand id at e it−1 here as C it−1 . Let us

assume that IV O L it−1 and C it−1 are not directly observable

and can only be measured with error: 

˜ IV OL it−1 = IV O L it−1 + u it−1 , (22)

˜ 
 it−1 = C it−1 + v it−1 . (23)

The following standard assumptions apply to the error

terms: 
(i) E( v it−1 ) = E( C it−1 v it−1 ) = E( IV O L it−1 v it−1 ) = 

E( μit−1 v it−1 ) = 0 

(ii) E( u it−1 ) = E( C it−1 u it−1 ) = E( IV O L it−1 u it−1 ) = 

E( ε it u it−1 ) = 0 

(iii) E( R it u it−1 ) = E( R it v it−1 ) = 0 

(iv) E( u it−1 v it−1 ) = 0 

(v) E( IV O L it−1 ε it ) = E( C it−1 μit−1 ) = 0 . 

From Eqs. (21), (22) , and (23) , the relation between
˜ IV OL it−1 and 

˜ C it−1 is: 

˜ IV OL it−1 = a t−1 + δt−1 ̃
 C it−1 + ω it−1 , (24)

where ω it−1 = μit−1 − δt−1 v it−1 + u it−1 . 

We can then write down the estimator, ˆ δt−1 , as a func-

tion of its true counterpart δt−1 : 

ˆ δt−1 = 

Cov ( ˜ IV OL it−1 , ˜ C it−1 ) 

Var ( ̃  C it−1 ) 

= 

Cov ( IV O L it−1 + u it−1 , C it−1 + v it−1 ) 

Var ( C it−1 + v it−1 ) 

= 

Cov ( a t−1 + δt−1 C it−1 + μit−1 + u it−1 , C it−1 + v it−1 ) 

Var ( C it−1 ) + Var ( v it−1 ) 

= 

σ 2 
C,t−1 

σ 2 
C,t−1 

+ σ 2 
v ,t−1 

× δt−1 . (25)

Next, we decompose ˆ γt , the estimator of γ t , using the es-

timators from Eq. (24) : 

ˆ γt = 

Cov ( R it , 
˜ IV OL it−1 ) 

Var ( ˜ IV OL it−1 ) 

= 

Cov ( R it , 
ˆ δt−1 ̃

 C it−1 ) 

Var ( ˜ IV OL it−1 ) 
+ 

Cov ( R it , ̂  a t−1 + ˆ ω it−1 ) 

Var ( ˜ IV OL it−1 ) 

= ˆ γ C 
t + ˆ γ R 

t . (26)

With the above, we can express ˆ γt and ˆ γ C 
t as functions of

their true counterparts γ t and γ C 
t : 

ˆ γt = 

Cov ( R it , 
˜ IV OL it−1 ) 

Var ( ˜ IV OL it−1 ) 

= 

Cov ( R it , IV O L it−1 + u it−1 ) 

Var ( IV O L it−1 + u it−1 ) 

= 

Cov ( R it , IV O L it−1 ) 

σ 2 
IVOL,t−1 

+ σ 2 
u,t−1 

= 

σ 2 
IVOL,t−1 

σ 2 
IVOL,t−1 

+ σ 2 
u,t−1 

× γt , (27)

and 

ˆ γ C 
t = 

Cov ( R it , 
ˆ δt−1 ̃

 C it−1 ) 

Var ( ˜ IV OL it−1 ) 
= 

Cov [ R it , 
ˆ δt−1 ( C it−1 + v it−1 ) ] 

σ 2 
IVOL,t−1 

+ σ 2 
u,t−1 

= 

Cov ( R it , 
ˆ δt−1 C it−1 ) 

σ 2 
IVOL,t−1 

+ σ 2 
u,t−1 

= 

σ 2 
C,t−1 

σ 2 
C,t−1 

+ σ 2 
v ,t−1 

× Cov ( R it , δt−1 C it−1 ) 

σ 2 
IVOL,t−1 

+ σ 2 
u,t−1 

= 

σ 2 
C,t−1 

σ 2 
C,t−1 

+ σ 2 
v ,t−1 

× σ 2 
IVOL,t−1 

σ 2 
IVOL,t−1 

+ σ 2 
u,t−1 

× γ C 
t . (28)



194 K. Hou, R.K. Loh / Journal of Financial Economics 121 (2016) 167–194 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can further simplify Eq. (28) by denoting k t−1 = 

σ 2 
C,t−1 

σ 2 
C,t−1 

+ σ 2 
v ,t−1 

, and λt−1 = 

σ 2 
IVOL,t−1 

σ 2 
IVOL,t−1 

+ σ 2 
u,t−1 

, where 0 < k t−1 < 1 

and 0 < λt−1 < 1 . 

We see from Eqs. (27) and (28) that both ˆ γt and ˆ γ C 
t 

are biased downwards. The bias in ˆ γt is due to the mea- 

surement error in IVOL while the bias in ˆ γ C 
t is due to the 

measurement errors in both IVOL and the candidate vari- 

able. It is then straightforward to use Eq. (4) to show that 

the mean of the fraction, ˆ γ C 
t / ̂  γt , is biased downwards with 

the magnitude of the bias determined by k t−1 : 

E 

(
ˆ γ C 

t 

ˆ γt 

)
≈

E 

(
ˆ γ C 

t 

)
E 

(
ˆ γt 

) = 

k t−1 λt−1 E 

(
γ C 

t 

)
λt−1 E( γt ) 

= k t−1 

E(γ C 
t ) 

E( γt ) 
. (29) 

The variance of the fraction is obtained by rewriting 

Eq. (5) : 

Var 

(
ˆ γ C 

t 

ˆ γt 

)
≈

( 

E 

(
ˆ γ C 

t 

)
E 

(
ˆ γt 

) ) 2 

×
( 

Var 
(

ˆ γ C 
t 

)(
E 

(
ˆ γ C 

t 

))2 
+ 

Var 
(

ˆ γt 

)(
E 

(
ˆ γt 

))2 
− 2 

Cov 
(

ˆ γ C 
t , ˆ γt 

)
E 

(
ˆ γ C 

t 

)
E 

(
ˆ γt 

)) 

. (30) 

We can verify the effect of measurement error on each of 

the following terms in ( 30 ): 

Var 
(

ˆ γ C 
t 

)(
E 

(
ˆ γ C 

t 

))2 
= 

k 2 t−1 λ
2 
t−1 Var 

(
γ C 

t 

)
k 2 

t−1 
λ2 

t−1 

(
E 

(
γ C 

t 

))2 
= 

Var 
(
γ C 

t 

)(
E 

(
γ C 

t 

))2 
, (31) 

Var 
(

ˆ γt 

)(
E 

(
ˆ γt 

))2 
= 

λ2 
t−1 Var ( γt ) 

λ2 
t−1 ( E ( γt ) ) 

2 
= 

Var ( γt ) 

( E ( γt ) ) 
2 
, (32) 

2 Cov 
(

ˆ γ C 
t , ˆ γt 

)
E 

(
ˆ γ C 

t 

)
E 

(
ˆ γt 

) = 

2 k t−1 λ
2 
t−1 Cov 

(
γ C 

t , γt 

)
k t−1 λ2 

t−1 
E 

(
γ C 

t 

)
E ( γt ) 

= 

2 Cov 
(
γ C 

t , γt 

)
E 

(
γ C 

t 

)
E ( γt ) 

. 

(33) 

As a result, the only source of bias in Eq. (30) is from the 

first term, ( 
E( ̂ γ C 

t ) 

E( ̂ γt ) 
) 2 = k 2 

t−1 
( 

E(γ C 
t ) 

E( γt ) 
) 2 . Hence, the standard er- 

ror of the fraction is biased downwards with the magni- 

tude of the bias determined by k t−1 , which is identical to 

the magnitude of the bias in the mean of the fraction as 

shown in Eq. (29) . 
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