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Optimal Tax Timing with Asymmetric Long-Term/Short-Term

Capital Gains Tax

Abstract

We develop an optimal tax-timing model that takes into account asymmetric long-term and short-

term tax rates for positive capital gains and limited tax deductibility of capital losses. In contrast

to the existing literature, this model can help explain why many investors not only defer short-

term capital losses to long term but also defer large long-term capital gains and losses. Because

the benefit of tax deductibility of capital losses increases with the short-term tax rates, effective

tax rates can decrease as short-term capital gains tax rates increase. (JEL G11, H24, K34, D91)



Investors in U.S. stock markets are subject to capital gains tax when gains or losses are realized.

When gains are realized, a lower long-term tax rate applies if and only if the stock holding period is

at least one year. In contrast, when losses are realized, a higher short-term rate applies regardless

of the length of the holding period, and investors effectively get a tax rebate. The short-term

rate is set to investors’ marginal ordinary income tax rate, and the rebate is implemented through

deducting the losses from their taxable ordinary income. Assuming that a long-term tax rate

applies to long-term losses, the existing literature on optimal investment with capital gains tax

argues that investors should realize all losses before they turn long term and realize all gains right

after they turn long term.1 In contrast, empirical evidence shows that many investors defer not

only short-term losses beyond one year but also large long-term gains and losses.2

In this paper, we propose an optimal tax-timing model that can help explain this puzzle. In

contrast to the large amount of existing literature,3 our model takes into account three important

features of the current tax code: (i) the tax rates for long-term gains can be lower than the rates for

short-term gains; (ii) capital losses allowed to offset taxable ordinary income are capped at $3,000

per year, with the rest carried forward indefinitely for offsetting future gains and/or income; and

(iii) short-term tax rates apply to both long-term and short-term losses.

More specifically, we consider an optimal capital gains tax-timing problem of a small (i.e., no

price impact), constant relative risk averse investor who can continuously trade a risk-free asset

and a stock to maximize expected utility from intertemporal consumption and bequest. According

to the current tax code, if an investor bought shares of a stock at different times, the capital gain

1 This way, they receive a tax rebate at the higher short-term rate for losses and enjoy the lower long-term rate for the
realized gains and reestablish the short-term status for potential subsequent losses (see, e.g., Constantinides 1983,
1984; Dammon and Spatt 1996; and Dammon, Spatt, and Zhang 2001).

2 For example, Wilson and Liddell (2010) report that among all 2007 U.S. tax returns, there were 53,403 long-term
gain transactions, of which 63.8% (30.0% of all gain transactions) had a holding period of 18 months or longer with an
average gain of $7,964.33 per transaction, and there were 19,186 long-term loss transactions, of which 62.9% (20.0%
of all loss transactions) had a holding period of 18 months or longer with an average loss of $2,741.33 per transaction.
The presence of transaction costs is unlikely able to explain this behavior because transaction cost rates are much
smaller than capital gains tax rates, and the deferred gains and losses can be large.

3 For example, Cadenillas and Pliska (1999), Dammon, Spatt, and Zhang (2004), Gallmeyer, Kaniel, and Tompaidis
(2006), Ben Tahar, Soner, and Touzi (2010), Ehling et al. (2010), Marekwica (2012), and Fischer and Gallmeyer
(2012).
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for a particular share sold is equal to the difference between the sale price and the original purchase

price of this share, and the applicable tax rate is determined by whether it is a loss and whether

the holding period of this share is at least one year. Therefore, one needs to keep track of the exact

original purchase price (“exact basis”) and the exact holding period of each share, which causes path

dependency of the optimal investment policy. Because this path dependency makes the optimal

investment problem infinitely dimensional, we approximate the exact basis using the average basis

of all the shares held, as in most of the existing literature, and we approximate the exact holding

period using the basis-weighted average of the holding periods of these shares (“average holding

period”).4

For positive capital gains, a long-term tax rate applies if and only if the average holding period

is at least one year. Different from the existing literature but consistent with the tax code, a higher

short-term rate applies to both long-term and short-term capital losses. We consider both the

full rebate (FR) case where an investor can use all capital losses to offset taxable ordinary income

and the full carry-forward (FC) case where the investor can only carry forward capital losses to

offset future gains and/or income.5 The FR case applies better to lower-income investors whose

capital losses are likely less than $3,000 per year, while the FC case is more suitable for high-income

investors for whom capital losses can be much more than $3,000 per year and a tax rebate (which

is capped at $3,000 × 39.6% = $1,188 per year) is relatively unimportant. The optimal tax-timing

and trading strategy is characterized by a no-trade region, a buy region, and a sell region that vary

through time. In both the buy region and the sell region, the investor trades to the no-trade region

to achieve optimal risk exposure and optimal tax timing. Outside the sell region, capital gains tax

is deferred.

4 As shown in DeMiguel and Uppal (2005), an investor rarely has more than one cost basis, and as shown in the Ap-
pendix, the certainty equivalent wealth loss from following a single-basis strategy (which is a feasible, but suboptimal
strategy in our model) is almost negligible (to keep a single basis, one needs to liquidate the entire position before
any additional purchases can be made). A previous version of this paper conducts the same analysis as this paper
with restriction to the class of single-basis strategies and finds qualitatively the same results as this paper.

5 Our main qualitative results such as an investor may defer long-term gains, and long-term losses are valid in both of
these polar cases. Therefore, a model with positive but limited rebate for losses would unlikely produce qualitatively
different results.
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In contrast to the existing literature (e.g., Constantinides 1984; Dammon and Spatt 1996; Ehling

et al. 2010; Marekwica 2012), we find that it may be optimal for investors to defer not only short-

term losses but also large long-term gains and long-term losses. Intuitively, different from what is

assumed in the existing literature, the higher short-term rates apply to both long-term and short-

term losses under the current law. Thus, the long-term status strictly dominates the short-term

status. Therefore, it may be optimal for investors to defer some possibly large gains and losses

regardless of the length of the holding period. In addition, high-income investors may optimally

defer larger long-term gains and losses than would lower-income investors.6 The main intuition is

that there is an additional benefit of deferring the realization of gains for high-income investors: it

makes incremental losses effectively tax rebatable without limit.7 When there is a large long-term

loss, and the long-term rate is much lower than the short-term rate, keeping the long-term status by

deferring realization can provide significant benefit from the much lower long-term rate when stock

prices rise and current losses turn into gains. In addition, the benefit of realizing long-term gains

or losses to reestablish the short-term status for future losses is small for high-income investors

because only a small fraction of losses can be tax deductible at the higher short-term rate for these

investors.

We also show that adopting the optimal trading strategy can be economically important. For

example, consider the alternative strategy of immediately realizing all losses and long-term gains

but deferring all short-term gains, as most of the existing literature recommends. We find that the

certainty equivalent wealth loss (CEWL) from following this alternative strategy is about 0.84% of

the initial wealth for lower-income investors and as much as 5.20% for high-income investors, given

reasonable parameter values.

6 The few existing studies that consider limited tax deductibility of losses (e.g., Ehling et al. 2010, Marekwica 2012)
consider only symmetric tax rates and are thus silent on the optimal deferring strategy of long-term gains and losses
when short-term rates are higher.

7 To help understand this additional benefit, consider a simple example where a high-income investor realizes a gain of
$1, pays the capital gain tax, reestablishes a stock position, and immediately loses $1. If the investor did not realize
the gain, then the subsequent loss would offset the original gain, and the investor would not need to pay any tax if
the stock were sold after the stock price decreased.
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Because lower-income investors can effectively obtain a tax rebate at the short-term tax rate

for a high percentage of their capital losses and can defer short-term capital gains to long term,

a higher short-term tax rate would enable them to get a higher rebate in case of a loss without

paying much more in case of a gain, and thus could make them better off. This implies that

effective tax rates on equity securities for lower-income investors can actually decline in short-term

capital gains tax rates. Even when other capital gains tax rates (e.g., long-term tax rates) are also

increased, lower-income investors may still become better off because marginal utility of wealth is

higher when there is a capital loss, and thus the tax rebate effect of a higher short-term rate can

dominate. Indeed, we find that keeping everything else (including the ordinary income tax rate)

constant, lower-income investors can be significantly better off with higher capital gains tax rates.

In addition, with higher capital gains tax rates, lower-income investors generally invest more and

consume more, because the after-tax stock return becomes less risky. As Wilson and Liddell (2010)

reported, in 2007 tax returns with an adjusted gross income of $100,000 or less had short-term net

losses on average. These tax returns, about six million in total, accounted for more than half of all

the returns that had short-term gains or losses, which suggests that many lower-income investors

could indeed benefit from higher short-term capital gains tax rates.8

Additionally, we analyze the sources of the value of tax deferral. The value of tax deferral comes

from (i) saving the time value of capital gains tax; (ii) realizing gains at the lower long-term rate in

the future; and (iii) in the FC case, making a capital loss effectively rebatable while deferring. We

show that for lower-income investors this value mainly comes from realizing gains at a lower long-

term rate because the interest rate is usually much lower than the difference between the short-term

rate and the long-term rate. In contrast, for high-income investors the value comes mainly from

making a capital loss effectively rebatable at the short-term rate because the short-term rate is

much higher than both the long-term rate and the interest rate for these investors.

8 In contrast, high-income investors for whom the FC case fits better are worse off with higher capital gains tax rates,
and their stock investment and consumption are almost insensitive to changes in short-term tax rates because they
defer most of the short-term gains.
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1. The Model

There are two assets that an investor who is subject to capital gains tax can trade without any

transaction costs. The first asset is a money market account growing at a continuously compounded,

constant rate of r. The second asset (“the stock”) is a risky investment.9 The stock pays a constant,

continuous dividend yield of δ. The ex-dividend stock price St follows the process

dSt

St
= µdt+ σdwt, (1)

where µ and σ are constants with µ+ δ > r, and wt is a one-dimensional Brownian motion.

The tax rates for long-term investment may be lower than those for short-term investment.

According to the tax code, capital gains tax depends on the final sale price, the exact initial purchase

price (“exact basis”), and the exact holding period of each share sold. Therefore, the optimal

investment strategy becomes path dependent (e.g., Dybvig and Koo 1996), and the optimization

problem is of infinite dimension.10 To simplify analysis, we approximate the exact cost basis using

the average cost basis of a position, as in most of the existing literature (e.g., Dammon, Spatt,

and Zhang 2001, 2004; Gallmeyer, Kaniel, and Tompaidis 2006), and in addition, we approximate

the exact holding period using the basis-weighted average of the holding periods of the shares

in the position (“average holding period”). Using an exact-basis and exact-holding-period model

similar to that of DeMiguel and Uppal (2005) but with asymmetric tax rates and multiple trading

opportunities within a year, we find that the optimal strategy using the average-basis and average-

9 The risky asset can be interpreted as an exchange traded fund (ETF) that represents a diversified portfolio. Although
ETFs are also pass-through entities like open-end mutual funds, ETFs pass through smaller amounts of capital gains
because they are typically passively managed and because they are more likely to use in-kind redemptions that reduce
the required distributions (e.g., Poterba and Shoven 2002). As a result, most of the capital gains tax for an ETF
investor is realized at sale, like a stock. An extension to a multi-stock case might help understand cross-stock tax
management strategy, but it would unlikely change our main qualitative results.

10 As an example of the exact-basis and exact-holding-time system, suppose an investor bought 10 shares at $50/share
one and half years ago and purchased 20 more shares at $60/share three months ago. The first 10 shares have a cost
basis of $50/share and a holding period of 1.5 years, and the remaining 20 shares have a cost basis of $60/share and
a holding period of 0.25 years. If the investor sells the entire position at $65/share, the early purchased 10 shares
have a capital gain of 65 × 10 − 50 × 10 = $150 and will be taxed at the long-term tax rate, and the remaining 20
shares have a capital gain of 65× 20− 60× 20 = $100 and will be taxed at the short-term tax rate.
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holding-period rule yields almost the same utility as using the exact-basis and exact-holding-period

rule (see Appendix A.5).

As the findings in DeMiguel and Uppal (2005) and our analysis in Appendix A.5 suggest,

an investor rarely holds more than one cost basis. Accordingly, an alternative approximation

approach is to restrict feasible trading strategies to those that result in a single cost basis—that is,

an investor must liquidate the entire stock position before making any additional purchase so that

at any point in time all shares in the entire stock position were purchased at the same time and at

the same initial cost. Clearly, a single-basis strategy is a feasible strategy in our average-basis and

average-holding-period model. One advantage of the single-basis model over the average-basis and

average-holding-period model is that no approximation is needed for the holding period. However,

restriction to a single-basis strategy biases against purchases because any purchases require that

the investor first realize all capital gains or losses.11

We consider both the full rebate (FR) case where an investor can use all capital losses to offset

taxable ordinary income and the full carry-forward (FC) case where the investor can only carry

forward capital losses to offset future gains.12

Let L be the shortest holding period required to qualify for a long-term tax status and ht be

the basis-weighted average holding period at time t. To reduce the (unintended) incentive to hold

some shares for a long time just to make the average holding period of a position greater than the

long-term threshold L, we cap the average holding period ht at h̄ > L.13 Let τ(h) be the tax rate

11 In addition, using a single-basis model does not change our qualitative results, as we have shown in a previous version
of the paper.

12 For a high-income investor with over $1.2 million and an investment horizon of ten years, the certainty equivalent
wealth gain from a tax rebate is less than 1% of the initial wealth because the maximum tax rebate the investor
can get is capped at $3,000× 39.6% = $1,188 a year. This suggests that for millionaire investors, the FC case
likely applies well. From our simulation results using the optimal trading strategy under the FR model given the
default parameter values in the numerical analysis section, for an investor with less than $34,642 initial wealth and
an investment horizon of 10 years, the probability that the investor has no loss above $3,000 any time in the 10-year
horizon is greater than 0.99. For these lower-wealth investors, the FR case likely applies well. We also solved a similar
problem where an investor switches from the FR case in the first half of the investment horizon to the FC case in the
second half and vice versa. These switches do not affect any of our main qualitative results, and the initial trading
strategies stay virtually the same.

13 Setting the upper bound h̄ = L would imply if one buys one additional share, then the short-term rate applies to
the entire position regardless of the size of the existing position. Choosing h̄ > L implies that when there are both
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function defined as follows:

τ(h) =











τS if h < L

τL if h ≥ L,
(2)

where τS ≥ τL ≥ 0 are constants.

As in most models on optimal investment with capital gains tax, we further assume (i) the tax

on dividend and interest is due when they are paid;14 (ii) capital gains tax is realized immediately

after sale; (iii) there is no wash sale restriction; and (iv) shorting against the box is prohibited.

The investor is endowed with x0 dollars cash and y0 dollars worth of stock at time 0.15 Let

xt denote the dollar amount invested in the riskless asset, yt denote the dollar value of the stock

holding, Bt be the total cost basis for the stock holding, and Ht ≡ Btht be the basis-weighted total

holding time, all at time t.16 We first state the evolution equations for the state variables and then

provide explanations below.

dxt = (1− τi)rxtdt+ (1− τd)δytdt− ctdt+ f

(

0, yt, Bt,
Ht

Bt
; 1

)

dMt − dIt, (3)

dyt = µytdt+ σytdwt − ytdMt + dIt, (4)

dBt = −BtdMt + ω (Bt − yt)
+ dMt + dIt, (5)

dHt = Bt1{Ht<h̄Bt}dt−HtdMt, (6)

long-term and short-term positions, one can realize capital gains sometimes at the long-term rate and sometimes at
the short-term rate, depending on whether h ≥ L. This better approximates current tax code: when there are both
long-term and short-term shares in a position, one can realize those long-term gains at the long-term rate and those
short-term gains at the short-term rate. We find that our main results are robust to the choice of this upper bound
that varies from 1 to 10, which suggests that the incentive to hold some shares for a long time just to make the
average holding period h ≥ L seems small in our model.

14 Interest paid on margin loan for stock purchasing is tax deductible.
15 This initial endowment includes the present value of all future after-tax ordinary income to which the investor can

add the tax rebate from capital losses.
16 Take the example in Footnote 10. In the average-basis and average-holding-period scheme, the total cost basis

Bt = $50 × 10 + $60 × 20 = $1, 700, the average basis is Bt/30 = $56 2
3
/share, the basis-weighted total holding time

for the entire position is Ht = 50 × 10 × 1.5 + 60 × 20 × 0.25 = 1, 050 (dollar year), the average holding period
ht = Ht/Bt = 0.62 years, and thus the total capital gain of $65 × 30− $56 2

3
× 30 = $250 is taxed at the short-term

rate.
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where

f(x, y,B, h; ι)

≡ x+
[

y − ι
(

τ(h)(y −B)− (1− ω) κ (τS − τ(h)) (B − y)+ + ωτ(h) (B − y)+
)]

(7)

is the after-tax wealth (zero tax if ι = 0, as in the case of tax forgiving at death); dMt represents

the fraction of the current stock position that is sold; dIt denotes the dollar amount purchased;

1{Ht<h̄Bt} is an indicator function that is equal to one if the average holding period ht = Ht/Bt is

below h̄ and zero otherwise;17 τi and τd are the tax rates for interest and dividend, respectively;

ω = 0 or 1 corresponds respectively to the FR case or the FC case, and κ = 0 or 1 corresponds

respectively to applying the long-term tax rate to long-term losses and the short-term tax rate to

short-term losses or applying the short-term tax rate to both long-term and short-term losses. Note

that when a jump in a variable occurs at t (e.g., yt, Bt), the variable value on the right-hand side

of the equations represents the value just before the jump—that is, the time t− value.

On the right-hand side of Equation (3), the first two terms are, respectively, the after-tax interest

earned and dividend paid; the third term is the consumption flow; the fourth term denotes the after-

tax dollar revenue from selling a fraction dMt of the time t stock position, and the last term, dIt,

is the dollar cost of purchasing additional stock at time t. By Equation (7), f(0, y,B,H/B; 1)

in Equation (3) represents the after-tax dollar revenue from selling the entire stock position. To

help understand this, we consider four cases. First, if there is a capital gain (i.e., y > B), then

the bracketed term reduces to y − τ(h) (y −B), which is clearly the after-tax revenue from selling

the entire position. Second, if there is a capital loss, and the investor can only carry forward the

loss (i.e., y < B and ω = 1), then the revenue term becomes y, meaning the investor does not

get any tax rebate for the loss. Third, if there is a capital loss, the investor gets a full rebate,

and the short-term tax rate is used for both long-term and short-term losses (i.e., y < B, ω = 0,

and κ = 1), then the revenue term becomes y − τS (y −B), which implies that the investor gets

17 As a convention, if Ht = 0 and Bt = 0, then ht = Ht/Bt = 0.
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a full tax rebate at the short-term rate. Fourth, if there is a capital loss, the investor gets a full

rebate, and the short-term tax rate is used for short-term losses and the long-term rate is used for

long-term losses (i.e., y < B, ω = 0, and κ = 0), then the revenue term becomes y − τ(h) (y −B),

which implies that the investor gets a full tax rebate at the long-term rate for long-term losses and

at the short-term rate for short-term losses.18

Equation (4) states that the value of the stock position fluctuates with the stock price, decreases

by the amount of sales ytdMt, and increases by the amount of purchases dIt. Between trades, the

dollar value of the stock holding follows a log normal distribution.

Equation (5) shows that the total cost basis Bt increases with purchases and decreases with

sales. When a capital loss is fully rebatable (ω = 0), the cost basis decreases proportionally with

sales. For example, a sale of 50% of the current position (i.e., dMt = 0.5) reduces the cost basis by

50%. When there is a loss (i.e., Bt > yt) and a capital loss can only be carried forward (ω = 1),

the loss (Bt − yt)dMt is added back to the remaining basis to be carried forward to offset future

gains.19

Equation (6) implies that without a sale, the basis-weighted total holding time Ht is increased

by the cost basis Bt multiplied by the time passed, up to a limit. If there is a sale, then the

total holding time is reduced proportionally. On the other hand, Ht is not immediately affected

by a purchase at time t (i.e., dIt is absent in Equation (6)) because at the time of purchase, the

holding period for the newly purchased shares is zero. The indicator function keeps the average

holding period ht = Ht/Bt below h̄. This is because if ht reaches h̄, then Equation (6) becomes

18 To understand the average-basis approximation in Equation (3), let n be the number of shares sold at time t and N
be the total number of shares the investor holds just before the sale. Then dMt =

n
N

and the realized capital gain is
equal to n× (St − B̄t) = n×

(

yt
N

−
Bt

N

)

= (yt −Bt)dMt, where B̄t is the average basis.
19 Note that the carried loss as modeled here does not differentiate long-term losses from short-term ones. According to

the tax code, whether carried loss is long term or short term matters only if there is a future long-term net gain after
offset by the carried loss and an investor can get a tax rebate for the carried loss at the time of the gain realization.
Because any loss can only be carried forward in the FC model, whether carried loss is long term or short term does
not matter for our model. In addition, our simulation results show that both the probability of a future long-term net
gain after offset by the carried loss and the dollar value difference it makes when this occurs are small for reasonable
parameter values. This suggests that even for a carry-forward model that allows a positive amount of rebate, the
status of the carried loss is unlikely important.
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dHt = −HtdMt. Equations (5) and (6) imply that (i) without a purchase or a sale, both the total

holding time Ht and the cost basis Bt stay the same, and so does the average holding period ht;

(ii) with a sale, if ω = 0 or y ≥ B, then both the total holding time and the cost basis go down by

the same proportion, and so the average holding period stays at h̄; if ω = 1 and y < B, then the

total holding time goes down by a greater proportion than the cost basis does, and so the average

holding period goes down; (iii) with a purchase, the total holding time stays the same, but the cost

basis increases, and so the average holding period goes down.

The investor maximizes expected utility from intertemporal consumption and the final after-tax

wealth at the first jump time T of an independent Poisson process with intensity λ. If this jump

time represents death time, the capital gains tax may be forgiven (e.g., in the United States) or

may not be forgiven (e.g., in Canada) at the death time.20 Let V (x0, y0, B0,H0) be the time 0

value function, which is equal to

sup
{ct,Mt,It}

E

[

α

∫ T

0
e−βtu(ct)dt+ (1− α)e−βT u

(

f

(

xT , yT , BT ,
HT

BT
; ι

))]

, (8)

subject to (3)–(6) and the solvency constraint

f

(

xt, yt, Bt,
Ht

Bt
; 1

)

≥ 0, ∀t ≥ 0, (9)

where β > 0 is the subjective discount rate; α ∈ [0, 1] is the weight on intertemporal consumption;

ι = 0 or 1 indicates whether tax is forgiven or not at the jump time; and

u(c) =
c1−γ

1− γ

with the relative risk aversion coefficient γ being positive and not equal to 1.

20 This jump time can also represent the time of a liquidity shock upon which one must liquidate the entire stock position.
As shown by Carr (1998) and Liu and Loewenstein (2002), one can use a series of random times to approximate a
fixed horizon (e.g., of performance evaluation), and when the investment horizon is long, the approximation using
one jump time is usually sufficient.
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1.1 Discussions on the assumptions of the model

Clearly, with us adopting several simplifying assumptions to make the analysis tractable, our model

is only a broad approximation of reality. On the other hand, these assumptions most likely do not

affect our main qualitative results. Take the main simplifying assumption of the average-basis and

average-holding-time approximation as an example. Even with exact basis and exact holding period

as stipulated by the tax code, an investor may still defer long-term gains and losses because long-

term status still strictly dominates short-term status. In addition, lower-income investors can get

even greater benefit from higher short-term tax rates in the exact-basis and exact-holding-period

model because they would be able to pick precisely the shares with the greatest losses to realize

first, while the average-basis approximation essentially forces investors to sell the same proportion

of the shares for each different cost basis whenever they sell stock.

Another simplifying assumption is that tax rates stay the same as an investor ages. Time-

varying tax rates surely would quantitatively affect the optimal deferral strategy. For example,

if an investor expects tax rates to decrease in the near future, then that investor has a stronger

incentive to defer more capital gains and for a longer time. However, qualitative results in this

paper still hold because the main driving forces of these results are still present. The impact of

the assumption on the immediate realization of capital gains tax is probably small, especially when

the interest rate is low. This is because if the interest rate is zero, then the investor can capitalize

the tax rebate/payment to be received/paid later without interest cost. The assumption of no

wash sale restriction is also unlikely to change our main results because, as Constantinides (1983)

argued, an investor may purchase a different stock with similar risk and return characteristics to

effectively bypass the wash sale restriction. Adding transaction cost to the model would likely

widen the no-trade region, and thus make investors defer even larger capital gains and losses,

thereby strengthening our qualitative results.
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2. Theoretical Analysis

In this section we conduct some theoretical analysis that facilitates our subsequent analysis.

The associated Hamilton-Jacobi-Bellman (HJB) equation for the investor’s optimization prob-

lem is

max

{

1{H<h̄B}BVH + L0V, − Vx + Vy + VB ,

f

(

0, y,B,
H

B
; 1

)

Vx − yVy −
(

B − ω (B − y)+
)

VB −HVH

}

= 0 (10)

in the region where H > 0, B > 0, y > 0, and f (x, y,B,H/B; 1) > 0, where

L0V =
1

2
σ2y2Vyy + µyVy + ((1− τi)rx+ (1− τd)δy)Vx − (β + λ)V

+α
1
γ

γ

1− γ
(Vx)

− 1−γ
γ +

(1− α)λ

1− γ
f(x, y,B,H/B; ι)1−γ .

Using the homogeneity property of the value function, we can reduce the dimensionality of the

problem by the following transformation:

z =
x

y
, b =

B

y
, h =

H

B
, V (x, y,B,H) = y1−γΦ(z, b, h),

for some function Φ, where b is equal to the average basis divided by the stock price and will be

simply referred to as the basis-price ratio. Then Equation (10) can be reduced to

max

{

1{h<h̄}Φh + L1Φ, (1− γ)Φ− (z + 1)Φz + (1− b)Φb −
h

b
Φh,

− (1− γ) Φ + f (z, 1, b, h; 1) Φz + ω (b− 1)+
(

Φb −
h

b
Φh

)}

= 0 (11)
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in the region where h > 0, b > 0, f (z, 1, b, h; 1) > 0, where

L1Φ =
1

2
σ2z2Φzz +

1

2
σ2b2Φbb + σ2zbΦzb −

(

µ− γσ2
)

bΦb

−
[

(µ − (1− τi)r − γσ2)z − (1− τd)δ
]

Φz +

[

(1− γ)(µ−
1

2
γσ2)− β − λ

]

Φ

+
γα1/γ

1− γ
(Φz)

− 1−γ
γ +

(1− α)λ

1− γ
f(z, 1, b, h; ι)1−γ .

The optimal trading strategy of the investor can be characterized by a no-trade region NT , a

buy region BR, and a sell region SR, which are defined as follows:

NT =











(z, b, h) :
(1− γ)Φ − (z + 1)Φz + (1− b)Φb −

h
bΦh < 0,

− (1− γ) Φ + f (z, 1, b, h; 1) Φz + ω(b− 1)+
(

Φb −
h
bΦh

)

< 0











,

BR =

{

(z, b, h) : (1− γ)Φ − (z + 1)Φz + (1− b)Φb −
h

b
Φh = 0

}

, and

SR =

{

(z, b, h) : − (1− γ) Φ + f (z, 1, b, h; 1) Φz + ω(b− 1)+
(

Φb −
h

b
Φh

)

= 0

}

.

Out of the no-trade region, buying to the buy boundary of NT , selling to the sell boundary of

NT , or liquidating a fraction of the current position and then buying back some shares is optimal.

We provide a verification theorem for the optimality of this trading strategy with its proof and a

numerical algorithm for solving the investor’s problem in the Appendix.

To provide a baseline result for computing the value of deferring tax realization, we next analyze

the optimal strategy within the class of strategies that never defer any capital gains tax. Proposition

1 shows that within this class of trading strategies, keeping a constant fraction of after-tax wealth

in stock is optimal in the FR case.

Proposition 1. Assume ω = 0, ι = 1 and

ρ ≡ β + λ− (1− γ)

(

(1− τi) r +
((1− τS)µ+ (1− τd) δ − (1− τi) r)

2

2γ (1− τS)
2 σ2

)

> 0.
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Within the class of strategies that never defer any capital gains tax, investing and consuming a

constant fraction of after-tax wealth are optimal, where the optimal fractions are

yt
xt + yt − τS (yt −Bt)

=
(1− τS)µ+ (1− τd) δ − (1− τi) r

γ (1− τS)
2 σ2

,

ct
xt + yt − τS (yt −Bt)

= α
1
γ ν−

1−γ
γ ,

and the associated value function is

[ν (x+ y − τS (y −B))]1−γ

1− γ
,

where ν is the unique positive root of

−ρν1−γ + γα
1
γ ν−

(1−γ)2

γ + (1− α)λ = 0. (12)

The following proposition indicates that in the FC case, if there is capital loss, then continuous

trading is optimal when h = 0 or tax rates are symmetric. This result is useful for finding numerical

solutions for the FC case because it provides a way to compute the solution at the initial point

h = 0, which we can then use for solving the problem with a positive holding period.

Proposition 2. Suppose ω = 1 and, in addition, h = 0 or τL = τS. Let Φ (z, b, h) be a solution to

HJB Equation (11). Then,

1. at h = 0,

Φ (z, b, 0) = (z + 1)1−γζ (θ) , for b > 1,

where θ = z+1
z+b ∈ [0, 1] and ζ(θ) satisfies Equations (A-2)–(A-3) in the Appendix.

2. the optimal trading strategy when there is a capital loss is to trade continuously to keep the

fraction of wealth in stock y
x+y equal to π∗∗(b) as defined below Equation (A-4).
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3. Numerical Analysis

In this section, we provide some numerical analysis on the solution of the investor’s problem.

3.1 Optimal trading boundaries

In this subsection, we set the default parameter values as follows: relative risk aversion coefficient

γ = 3, jump time intensity λ = 0.04 (i.e., an average investment horizon of 25 years), subjective

discount rate β = 0.01, interest rate r = 0.03, expected stock return µ = 0.07, dividend yield

δ = 0.02, stock return volatility σ = 0.2, intertemporal consumption utility weight α = 0.9, short-

term tax rate τS = 0.35, long-term tax rate τL = 0.15, interest and dividend tax rates τi = τd = τS ,

threshold for long-term status L = 1, the upper bound for the average holding period h̄ = 1.5, and

ι = 0 (i.e., tax is forgiven at death). We also provide results with a different set of parameters to

show comparative statics and robustness to the choice of parameter values.

Figure 1 plots the optimal trading boundaries against the basis-price ratio b for the FC case,

with the round dots representing the optimal positions at b = 1 and h = 0. The vertical axis

denotes the fraction of after-tax wealth invested in stock—that is, π ≡ y
f(x,y,b,h;1) . When tax rates

are zero, we have the standard Merton solution where the investor invests a constant fraction 50%

of wealth in the stock, as indicated by the thin Merton lines in Figures 1(a) and 1(b).

With positive tax rates, the investor may defer realizing capital gains as indicated by the no-

trade regions in Figure 1. In addition, as tax rates increase, the buy boundaries go down and the

sell boundaries go up due to the higher cost from realizing gains, as Figures 1(a) and 1(b) suggest.

Deferring the realization of capital gains has three benefits. First, it defers the tax payment, and

thus gains on the time value. Second, if the long-term rate is lower than the short-term rate, then

deferring realization until it becomes long term enables the investor to realize gains at the lower

long-term rate. Third, it can make some of the future losses rebatable.

To understand the third benefit, suppose the investor holds one share with capital gain. If

the investor realizes the gain, pays the tax, and buys back some shares, but the stock price drops
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Figure 1

Optimal trading boundaries against basis-price ratio b, the FC case
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iii. Asymmetric tax rates, τL = 0, τS = 0.396
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subsequently, then the investor can only carry forward the loss. If, instead, the investor did not

realize the gain, then the subsequent loss from the drop in the stock price would offset some of

the original gain, thus reducing the amount of remaining gain that is subject to tax and effectively

making the subsequent loss rebatable. As we will show later, this third benefit can be the main

source of the benefits from deferring tax in the FC case, even with asymmetric tax rates.

Even though deferring capital gains realization can have significant benefits, Figure 1 implies

that realizing capital gains even when the time value is positive can still be optimal because the

NT regions are bounded above. Intuitively, the no-trade region reflects the trade-off between

the benefit of the deferral of capital gains and the cost of suboptimal risk exposure. When the

fraction of wealth in stock is too high relative to the optimal fraction in the absence of tax, the

cost of suboptimal risk exposure is greater than the benefit of the deferral. Therefore, the investor

sells the stock to reduce the risk exposure. More specifically, if the fraction of wealth in stock is

(vertically) above the sell boundary, then the investor sells a minimum amount (and thus realizes

some capital gains) to reach the sell boundary. The trading direction is vertically downward (e.g.,

A to B in Figure 1(a)) in the figures because as the investor sells, the total basis (B) and the dollar

amount in the stock (y) decrease by the same proportion, and thus the basis-price ratio b does not

change. However, if the fraction of wealth in the stock is (vertically) below the buy boundary, then

the investor buys enough to reach the buy boundary (e.g., C to D in Figure 1(a) or E to F in Figure

1(b)). The direction of trade is no longer vertical because both the total basis B and the dollar

amount y increase by the same dollar amount (instead of the same proportion), and thus the new

basis-price ratio b gets closer to 1.

Consistent with the finding of Marekwica (2012), Figures 1(a) and 1(b) imply that investors

should realize losses immediately. More specifically, if there is a net capital loss (i.e., b > 1), then

as shown in Proposition 2, investors should continuously realize additional losses and gains to stay

at the dotted lines. Even though capital losses are not eligible for a tax rebate, loss realization has

a benefit of achieving a better risk exposure sooner. When the investor has subsequent positive
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gains, these gains offset some carried losses, and the investor’s stock position moves left toward

the b = 1 line. The distance between the optimal fraction at b = 1 (denoted by the round dot)

and the dotted line for b > 1 suggests that the optimal fraction of wealth invested in the stock is

discontinuous at b = 1. This is because the investor needs to pay tax for capital gains but can

only carry forward capital losses. Because of this discrepancy, the investor tends to invest less with

gains and more with losses, which can offset some subsequent gains. This asymmetric treatment of

gains and losses also makes it optimal to defer even tiny capital gains (i.e., b is close to 1) as long

as the fraction of wealth in stock is not too high.

Figures 1(c) through 1(f) plot the optimal trading boundaries for the asymmetric tax rates case.

Compared with the symmetric tax case with τL = τS = 0.35, the no-trade region is much wider,

which reflects the greater benefit of deferring capital gains tax in order to realize gains at the lower

long-term tax rate. Still, in contrast to Constantinides (1984) and Dammon and Spatt (1996),

Figure 1(c) implies that it can be optimal to realize short-term gains even when the long-term rate

is much lower than the short-term rate, as long as the fraction of wealth in the stock becomes too

high relative to the optimal risk exposure in the absence of tax and the holding period is not too

close to one year. Different from the symmetric tax rate case, when the investor has held shares

for some time (h > 0) and buys some additional shares, the purchase shortens the average holding

period of the new position, and thus the end point (e.g., Point B in Figure 1(c)) lies on the buy

boundary for some holding period h < 0.5, although this is not obvious in Figure 1(c) because the

buy boundary at h = 0 is close to the boundary at h = 0.5.

When long-term rates are significantly lower than short-term rates and there is a capital gain

(b < 1), the sell boundary goes up dramatically as the holding period increases because the benefit

of deferring tax becomes greater. Figure 1(d) shows that just before the position turns long-term

(h = 1−), the investor does not sell at all, even with a huge fraction of wealth invested in the stock,

due to the imminent long-term status that entitles the investor to a lower tax rate. However, the

buy boundary stays close to the Merton line and is almost insensitive to change in the holding
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period even when the position is about to become long term. This is because (i) buying stock gets

the position closer to the Merton line and does not trigger capital gains tax, and (ii) as explained

below, it is optimal to buy additional shares to stay close to the Merton line even when the gain

becomes long term, as implied by the long-term buy boundary.

Although Figures 1(c) and 1(d) may suggest that realizing all losses immediately is optimal

even with asymmetric tax rates, this is not true in general. Indeed, Figures 1(e) and 1(f) show

that if the difference between the long-term rate and short-term rate is large enough, then deferring

even large capital losses may be optimal. This is because deferring realization would entitle the

investor to the much lower long-term rate sooner when the stock price rises and current losses turn

into gains.

In contrast to the existing literature (e.g., Constantinides 1984), Figures 1(d) and 1(f) show that

deferring even large long-term capital gains (h > 1) can also be optimal, although the no-trade

region shrinks significantly for h > 1 because of the lower long-term capital gains tax rate. As

discussed before, by deferring gains the investor can effectively make incremental losses rebatable.

Therefore, a benefit of deferring the realization of any gains, long term or short term, always exists.

To ensure that this benefit dominates the cost of having suboptimal risk exposure, the investor

keeps the fraction of wealth in stock close to the Merton line by buying or selling whenever the

fraction gets out of the narrow no-trade region. The standard argument for immediately realizing

all long-term gains and losses is that one can reestablish short-term status so that the subsequent

losses can be rebated at the higher short-term rate. But this argument no longer holds when the

rebate is limited and relatively unimportant, as in the case for high-income investors. Given that

high-income investors are still entitled to some tax rebate in practice, our findings suggest that it

is optimal for these investors to realize a small fraction of long-term gains and losses to catch the

limited rebate benefit but defer the rest.

Figure 2 plots the optimal trading boundaries against the basis-price ratio b for the FR case.

Figures 2(a) and 2(b) show that with symmetric tax rates, the entire region with capital losses
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Figure 2

Optimal trading boundaries against basis-price ratio b, the FR case

i. Symmetric tax rates

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Basis−Price Ratio b

F
ra

ct
io

n 
of

 W
ea

lth
 in

 S
to

ck

Merton Line

(a) τL = τS = 0.15

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Basis−Price Ratio b

F
ra

ct
io

n 
of

 W
ea

lth
 in

 S
to

ck

Merton Line

(b) τL = τS = 0.35

ii. Asymmetric tax rates

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

Basis−Price Ratio b

F
ra

ct
io

n 
of

 W
ea

lth
 in

 S
to

ck

T

(c) h = 0

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

Basis−Price Ratio b

F
ra

ct
io

n 
of

 W
ea

lth
 in

 S
to

ck

B

A

C

(d) h = 0.5

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

Basis−Price Ratio b

F
ra

ct
io

n 
of

 W
ea

lth
 in

 S
to

ck

(e) h = 0.99

0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

Basis−Price Ratio b

F
ra

ct
io

n 
of

 W
ea

lth
 in

 S
to

ck

BUY

NT

T

SELL

B

A

SELL

C

SELL

(f) h = 1+

0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

Basis−Price Ratio b

F
ra

ct
io

n 
of

 W
ea

lth
 in

 S
to

ck

SELL

NT

T

BUY

SELL

A

B

C

D

E

F

SELL

(g) h = 1.25

0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

Basis−Price Ratio b

F
ra

ct
io

n 
of

 W
ea

lth
 in

 S
to

ck

BUY

SELL

NT

T

SELL

A

SELL

(h) h = 1.49

iii. Asymmetric tax rates, single basis
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(i) h = 1−(red), 1+(blue), κ = 0
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(i.e., b > 1) belongs to the sell region, which implies that immediately realizing any capital losses

is always optimal, as predicted by the existing literature. In addition to the benefit of reducing the

duration of a suboptimal position, immediately realizing losses can also earn interest on the tax

rebate sooner. As the tax rate increases, the no-trade region widens due to the increased benefit

of deferring.

As in the FC case, Figure 2(c) shows that if the long-term rate is lower than the short-term

rate, then the no-trade region becomes much wider because the benefit of deferring short-term gains

increases due to the lower long-term rate. Figures 2(d) and 2(e) indicate that as in the FC case,

the investor may find it optimal to defer loss realizations if he or she has already held the stock for

some time (e.g., h ≥ 0.5). In addition, as the holding period increases, the no-trade region widens,

and when the holding period gets close to one year, it is rarely optimal for the investor to realize

short-term gains, as in the FC case. In contrast to the FC case, however, the buy boundary lowers

significantly as the holding period increases. This is because with full rebate, realizing all large

long-term gains to reestablish the short-term status is optimal, as explained below, and buying

additional shares would shorten the average holding period and defer realization of gains at the

lower long-term rate.

At h = 0, the investor trades to Point T to realize all losses immediately, as in the symmetric

rate case. When there is a large loss and h > 0 (e.g., Point A in Figure 2(d)), an investor should

realize some of the loss by selling (vertically) to the red curve and then buy back some shares. For

example, at Point A in Figure 2(d), it is optimal to first sell to Point B and then buy to Point C,

which is close to Point T in Figure 2(c). The reason that C is inside the no-trade region for h = 0.5

is again that any purchase reduces the average holding period. Realizing all losses is not optimal

when h > 0 because the utility strictly increases in the average holding period, and by realizing

only part of the losses, the average holding period for the new position after realization remains

greater than zero.

Figures 2(c) through 2(h) imply that the optimal trading strategies for short-term status and
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long-term status are qualitatively different. An investor tends to defer realization of large short-term

capital gains, as reflected by the wider no-trade region when b is small and h < 1, but immediately

realizes at least some large long-term capital gains. For example, Figure 2(f) shows that in the

region to the left of the dashed line, selling the entire position before buying back some shares is

optimal (e.g., A to B to T, where T is the same point as that in Figure 2(c)), while Figure 2(g)

shows that in the sell region just to the right of the dashed line, it is optimal to sell a fraction of

the current position before buying back a certain amount (e.g., A to B to C in Figure 2(g)). If an

investor deferred a large long-term gain and experienced an incremental loss due to a subsequent

price drop, but the investor still had a net gain because the original gain was large, then effectively

the investor can use the entire incremental loss to offset the original gain, making it equivalent to

being rebated at the lower long-term rate. In contrast, if it is realized, then the incremental loss

can be rebated at the higher short-term rate.

Still, because the investor realizes only part of the long-term gains and losses (e.g., D to E to F

in Figure 2(g)) except for huge long-term gains (to the left of the dashed lines), deferring some large

long-term gains and losses is optimal, as in the FC case. The main intuition is as follows. First,

long-term status strictly dominates short-term status because long-term gains can be realized at the

lower long-term rate, and long-term losses can be rebated at the same short-term rate. Therefore,

keeping long-term status by deferring long-term gains and losses always has a benefit. Second, the

cost of deferring long-term gains explained in the previous paragraph is less for smaller gains. This

is because an incremental loss can more likely turn a smaller gain into a net loss, and if the net

loss is realized, then the part of the incremental loss that exceeds the original gain is rebated at

the short-term rate, while for a large gain, the entire incremental loss is effectively rebated at the

lower long-term rate because a net gain still occurs after offset by the incremental loss.

As far as we know, all the existing literature on optimal consumption and investment with

capital gains tax assumes long-term tax rates apply to long-term losses (i.e., κ = 0), while the tax

code dictates that short-term rates apply (i.e., κ = 1). Does the assumption of κ = 0 significantly
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affect the optimal trading strategies? What is the value of being able to realize long-term losses

at the short-term rate instead of at the long-term rate? We find that with the average-holding-

period approximation, whether the short-term or long-term rate applies to long-term losses does

not significantly change either the optimal trading strategy or the expected utility. This is because

an investor with a long-term loss position can first change the position from long term to short term

by buying enough additional shares and then realize the losses at the short-term rate. However, in

practice, while buying shares changes the average holding period, it does not change the tax rate

that applies to the shares with long-term losses. This suggests that for the purpose of examining

the impact of different rates applicable to long-term losses, restricting feasible trading strategies to

the class of single-basis strategies discussed before may yield a better assessment of this impact.

This is because within the class of single-basis strategies, if the investor defers short-term losses to

long term, then as in practice, these losses will stay long term until entirely realized. We find that

with the restriction to single-basis strategies, when the holding period is short (e.g., h = 0, h = 0.5),

the trading strategies for κ = 1 and κ = 0 are still virtually the same, as in the unrestricted case.

However, Figures 2(i)–2(k) show that as the holding period approaches or exceeds the long-term

threshold of one year, the optimal trading strategies for κ = 1 and κ = 0 become significantly

different. Figure 2(i) suggests that when the holding period is just below 1 (h = 1−), realizing

all losses and deferring almost all gains is optimal if the long-term rate applies to long-term losses

(κ = 0). In addition, right after the status becomes long term (i.e., h = 1+), the investor should

realize all long-term gains and losses immediately and rebalance to the dotted position, consistent

with the recommendation of the existing literature. In contrast, if the short-term rate applies

to long-term losses (κ = 1), the investor should defer some long-term gains and losses, as in the

unrestricted case. However, the utility loss from having the long-term rate applying to long-term

losses is still small. For example, for the default parameter values, it is about 0.5% of the initial

wealth because an investor defers only small long-term losses in the single-basis case, as shown

in Figure 2(k). Even though the utility loss from applying long-term rates to long-term losses is
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Table 1

Three tax brackets and CEWLs

Ordinary income levels τi τd τS τL CEWL

Lower income (low rates) 0.1 0 0.1 0 0.84% (FR)

Medium income (medium rates) 0.25 0.15 0.25 0.15 2.99% (FC)

High income (high rates) 0.434 0.238 0.434 0.238 5.20% (FC)

Parameter default values: γ = 3, β = 0.01, L = 1, h̄ = 1.5, r = 0.03, µ = 0.07, σ = 0.2, α = 0.9,
δ = 0.02, ι = 0, κ = 1, λ = 0.04, x0− = 1, and y0− = 0.

relatively small, it is still important that we model short-term rates as applicable to both short-term

losses and long-term losses (as in the tax code). One reason is that doing so helps understand why

it can be optimal for investors to defer long-term capital gains and losses and shows that our main

results are not caused by assumptions that are inconsistent with the tax code.

So far we have shown that the optimal trading strategies are qualitatively different from those

of the existing literature. We next examine whether it is also economically important to adopt the

optimal strategies. For this purpose, we compute the certainty equivalent wealth loss (CEWL) as

a fraction of the initial wealth from following the simple strategy most of the existing literature

recommends: realize all losses and all long-term gains immediately, but defer all short-term gains.

In Table 1, we report the tax rates and the CEWLs for investors at three ordinary income levels.

Table 1 suggests that adopting the suboptimal strategy can be costly, especially for high-income

investors for whom most losses are not tax deductible. For example, high-income investors are

willing to pay as much as 5.20% of their initial wealth to adopt the optimal strategy. Even for

lower-income investors, the value is still about 0.84% of their initial wealth. Further analysis shows

that the main source of the cost comes from immediately realizing all long-term gains, whereas the

optimal strategy is to defer some long-term gains, as shown in Figures 1 and 2.
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3.2 Would higher capital gains tax rates make lower-income investors better

off?

Because short-term capital gains and interest tax rates are set to investors’ marginal ordinary

income tax rates in the current tax code, these rates for lower-income investors are lower than

those for higher-income investors (e.g., see Table 1). Because lower-income investors likely can

have a high percentage of their capital losses rebated at the short-term tax rate and defer short-

term capital gains to long term, higher short-term tax rates would enable them to get more rebate

in case of losses, largely avoid paying tax at the short-term rates in case of positive gains, and thus

could make them better off. Furthermore, even when other capital gains tax rates (e.g., long-term

and dividend tax rates) are also increased, lower-income investors may still be better off because

marginal utility of wealth is higher when there is a capital loss, and thus the tax rebate effect of a

higher short-term rate can dominate.

To investigate this possibility, we compute the certainty equivalent wealth gain (CEWG, in

terms of the fraction of the initial wealth) of a lower-income investor with the investor’s short-

term capital gains and interest tax rates increased to higher rates, keeping constant everything

else (including ordinary income tax rate). More specifically, let VL(x, y,B,H) denote the value

function of a lower-income investor with the tax rates as in the “Low rates” row of Table 1 and

VH(x, y,B,H) denote the value function of the same lower-income investor but with the short-term

capital gains and interest tax rates increased to those in the “High rates” row or the “Medium

rates” row in Table 1. Let ∆ denote the time 0 CEWG of the lower-income investor with all the

initial wealth in the risk-free asset—that is, ∆ solves21

VL(1 + ∆, 0, 0, 0) = VH(1, 0, 0, 0).

For a set of parameter values, we report in Table 2 the CEWGs of a lower-income investor when

21 Because of the homogeneity of the value functions, ∆ is independent of the initial wealth, which can therefore be set
to 1 without loss of generality.
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Table 2

CEWGs and optimal initial policies of a lower-income investor with different

short-term capital gains and interest tax rates

CEWG ∆ High rates Medium rates Low rates

Cases L→M L→H
y∗0

x∗
0+y∗0

c∗0
x∗
0+y∗0

y∗0
x∗
0+y∗0

c∗0
x∗
0+y∗0

y∗0
x∗
0+y∗0

c∗0
x∗
0+y∗0

Base case 0.315 0.914 1.390 0.078 0.930 0.061 0.610 0.051

δ = 0 0.223 0.688 1.070 0.061 0.690 0.049 0.430 0.043

δ = 0.01 0.272 0.808 1.230 0.069 0.810 0.055 0.530 0.046

µ = 0.06 0.291 0.873 1.270 0.071 0.830 0.055 0.530 0.047

σ = 0.3 0.271 0.678 0.690 0.060 0.450 0.049 0.270 0.043

α = 0.5 0.315 0.914 1.390 0.078 0.930 0.061 0.610 0.051

λ = 0.1 0.222 0.634 1.370 0.098 0.930 0.081 0.610 0.071

λ = 0.2 0.149 0.417 1.350 0.131 0.910 0.114 0.610 0.104

γ = 5 0.172 0.513 0.790 0.060 0.530 0.049 0.370 0.043

ι = 1 0.315 0.914 1.390 0.078 0.930 0.061 0.610 0.051

κ = 0 0.315 0.913 1.390 0.078 0.930 0.061 0.600 0.051

δ = 0
µ = 0.06

0.185 0.611 0.960 0.055 0.590 0.045 0.350 0.040

ι = 1
λ = 0.5

0.074 0.203 1.290 0.230 0.870 0.213 0.590 0.204

ι = 1
λ = 1

0.039 0.105 1.210 0.394 0.830 0.378 0.570 0.368

This table presents CEWGs of a lower-income investor with long-term capital gains and dividend
tax rates as in the “Low rates” row of Table 1 but with short-term capital gains and interest tax
rates increased to those in the “Medium rates” row or in the “High rates” row of Table 1, in addition

to optimal time 0 fractions of wealth invested in stock (
y∗0

x∗
0+y∗0

) and time 0 consumption to wealth

ratios (
c∗0

x∗
0+y∗0

) of the investor given these different rates. Base case parameter values: ω = 0, γ = 3,

β = 0.01, L = 1, h̄ = 1.5, r = 0.03, µ = 0.07, σ = 0.2, α = 0.9, δ = 0.02, ι = 0, κ = 1, λ = 0.04,
x0− = 1, and y0− = 0.
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Table 3

CEWGs and optimal initial policies of a lower-income investor with high, medium, or

low rates as in Table 1

CEWG ∆ High rates Medium rates Low rates

Cases L→M L→H
y∗0

x∗
0+y∗0

c∗0
x∗
0+y∗0

y∗0
x∗
0+y∗0

c∗0
x∗
0+y∗0

y∗0
x∗
0+y∗0

c∗0
x∗
0+y∗0

Base case -0.049 0.094 1.090 0.054 0.770 0.049 0.610 0.051

δ = 0 -0.070 0.014 0.810 0.043 0.550 0.041 0.430 0.043

δ = 0.01 -0.058 0.056 0.950 0.048 0.650 0.045 0.530 0.046

µ = 0.06 -0.056 0.067 0.970 0.049 0.670 0.045 0.530 0.047

σ = 0.3 -0.071 0.007 0.510 0.043 0.350 0.041 0.270 0.043

α = 0.5 -0.047 0.094 1.090 0.054 0.770 0.049 0.610 0.051

λ = 0.1 -0.033 0.067 1.090 0.074 0.770 0.069 0.610 0.071

λ = 0.2 -0.023 0.045 1.070 0.107 0.740 0.102 0.610 0.104

γ = 5 -0.074 -0.017 0.630 0.042 0.450 0.040 0.370 0.043

ι = 1 -0.047 0.094 1.090 0.054 0.770 0.049 0.610 0.051

κ = 0 -0.047 0.094 1.090 0.054 0.770 0.049 0.600 0.051

δ = 0
µ = 0.06

-0.081 -0.022 0.690 0.040 0.450 0.038 0.350 0.040

ι = 1
λ = 0.5

-0.012 0.022 1.030 0.207 0.730 0.202 0.590 0.204

ι = 1
λ = 1

-0.007 0.011 0.970 0.371 0.690 0.367 0.570 0.368

This table presents CEWGs of a lower-income investor with the low rates as in Table 1 changed
to the medium rates or high rates as in Table 1, in addition to optimal time 0 fractions of wealth

invested in stock (
y∗0

x∗
0+y∗0

) and time 0 consumption to wealth ratios (
c∗0

x∗
0+y∗0

) of the investor given

these different rates. Base case parameter values: ω = 0, γ = 3, β = 0.01, L = 1, h̄ = 1.5, r = 0.03,
µ = 0.07, σ = 0.2, α = 0.9, δ = 0.02, ι = 0, κ = 1, λ = 0.04, x0− = 1, and y0− = 0.
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the short-term capital gains and interest tax rates increase from those in the “Low rates” row of

Table 1 to those in the “Medium rates” or “High rates” rows of Table 1.22 In Table 2, we also

report the optimal time 0 fractions of wealth invested in stock (
y∗0

x∗
0+y∗0

) and time 0 consumption

to wealth ratios (
c∗0

x∗
0+y∗0

) of the lower-income investor facing these different tax rates.23 Table 2

suggests that a lower-income investor can be significantly better off with higher short-term capital

gains and interest tax rates. For example, in the base case, increasing the short-term and interest

tax rate from 10% to the medium rate of 25% (respectively the high rate of 39.6%) is equivalent to

increasing the investor’s initial wealth by 31.5% (respectively 91.4%). Even when an older lower-

income investor has only an expected five-year remaining lifetime (λ = 0.2), having the medium

rate of 25% (respectively the high rate of 43.4%) is equivalent to an increase of 14.9% (respectively

41.7%) of the initial wealth. An increase in stock volatility or risk aversion, or a decrease in expected

return or dividend yield, decreases the CEWGs because the investor invests less in stock. However,

the gains are still significant. For example, when the volatility increases to 30%, the CEWG is still

27.1% for an increase to the medium rate of 25% and 67.8% for an increase to the high rate of

43.4%. With an expected time to death of 25 years, the tax forgiveness at death has almost no

impact on the CEWGs or optimal consumption or optimal investment, as shown by the row with

ι = 1.

An investor with a higher tax rate pays more tax when he or she realizes a positive gain, and

thus if liquidity reasons force investors to liquidate, the value of higher short-term rates should

decrease. To examine the impact of this forced liquidation, we report the results when an investor

must liquidate the entire stock position due to a large liquidity shock that occurs once or twice a

year on average (λ = 0.5, 1) and needs to pay tax at liquidation (i.e., ι = 1). Indeed the CEWGs

22 For the case where the lower-income investor’s rates are changed to the “High rates,” because the tax code stipulates
that the Medicare surtax of 3.8% does not apply to losses (i.e., an investor can only get a tax rebate for losses at 39.6%
instead of 43.4%), we use 39.6% for capital losses and 43.4% for short-term positive capital gains in the calculations
in this case in Tables 2 and 3. This requires a slight extension of our main model because the short-term rate that
applies to losses differs from the short-term rate that applies to short-term positive gains. Because the extension is
minor and we do not want to further complicate the notations in the main model, we did not change the main model
specification.

23 At time 0, the after-tax wealth is the same as the before-tax wealth because the initial stock holding is 0.
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are much smaller because the investor has to realize short-term gains more often, and the expected

investment horizon is much shorter. For example, when the large liquidity shock occurs once a

year on average (λ = 1), the CEWG of the investor from having the medium rate of 25% (resp.

high rate of 43.4%) decreases to 3.9% (resp. 10.5%). On the other hand, since the expected

investment horizon is now only one year, the 3.9% gain remains economically significant. These

findings indicate that liquidity-induced capital gain realization is unlikely to eliminate or reverse

the result that lower-income investors can be better off with higher short-term and interest tax

rates. These results show that effective tax rates on equity securities for lower-income investors

can actually decline as short-term capital gains tax rates increase because of the option of realizing

losses short-term to get greater tax rebates and realizing positive gains long-term to avoid paying

tax at the higher short-term rates.

In the above analysis, we increase only the short-term capital gains and interest tax rates to

those of higher-income investors. Table 3 reports the corresponding results when we also increase

long-term capital gains and dividend tax rates to those of higher-income investors as specified in

Table 1. Table 3 shows that while the lower-income investor is worse off with the medium rates

because the short-term tax rate for medium-income investors is not sufficiently high, the lower-

income investor is still better off with the high rates even though the investor must pay long-term

gains and dividends at significantly higher tax rates. For example, in the base case, having the high

rates is equivalent to increasing the lower-income investor’s initial wealth by 9.4%, even though the

investor must pay 23.8% instead of 0% for long-term gains and dividends.

Tables 2 and 3 also show that with higher tax rates, a lower-income investor generally invests

more and consumes more at time 0 because the after-tax stock return is less risky with higher

short-term tax rates.24 In addition, investment and consumption decrease with volatility, increase

with expected return, and are almost insensitive to whether tax is forgiven at death or not.

24 In contrast, we show that for a wealthy investor, both initial investment and initial consumption are almost insensitive
to an increase in the short-term capital gains tax rate, mainly because realized losses are mostly not tax rebatable,
and thus the after-tax riskiness of the stock is largely unchanged, as first pointed out by Domar and Musgrave (1944).
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To summarize, we show that keeping everything else constant, raising capital gains tax rates for

lower-income investors can make them consume more, invest more, and become significantly better

off. However, according to the current law, the tax rebate for losses is through deduction from

taxable ordinary income. Thus, higher capital gains tax rates can benefit lower-income investors

only through delinking short-term capital gains tax rates from ordinary income tax rates, such as

changing the tax code from a taxable income deduction to a tax credit for capital losses.

In our model, we assume that high-income investors cannot get any tax rebate for capital losses.

In practice, high-income investors can also get a tax rebate for up to $3,000 of capital losses per year.

Because high-income investors invest more and are more likely to get the full benefit of the $3,000

capital loss deduction and at a higher ordinary income rate, they have a greater dollar amount

benefit from the tax rebate for capital losses. Therefore, without delinking short-term capital gains

tax rates from ordinary income tax rates, lower-income investors get less dollar amount benefit of

a tax rebate than high-income investors get, even though the marginal utility of the benefit per

dollar is higher for lower-income investors.

On the other hand, our model clearly does not consider all the factors that may decrease the

benefit of higher short-term capital gains tax rates for lower-income investors. For example, some

lower-income investors do not invest in stocks and their only investment income is from interest

earned from savings in banks, in which case the interest would be taxed at the higher rates.

Therefore, raising short-term capital gains tax rates for lower-income investors could indeed hurt

some lower-income investors. Whether it is socially beneficial to raise short-term capital gains tax

rates for lower-income investors is an important empirical question that is beyond the scope of

this paper. On the other hand, our analysis suggests that any potential costs of raising short-term

capital gains tax rates for lower-income investors should be compared with the above illustrated

potential benefit.
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3.3 The value of deferring capital gains realization

Because investors pay capital gains tax only when they realize capital gains, an investor has the

option to defer capital gains tax. When long-term and short-term tax rates are the same, the

value of this deferral comes from the time value of the capital gains tax (for both the FR and the

FC cases) and from making losses effectively rebatable (for the FC case). When long-term rates

are lower than short-term rates, the value of this deferral also comes from the benefit of realizing

gains at the lower long-term rates. We next decompose the value of deferral into these sources to

compare their relative magnitudes. More specifically, let V (x, y,B,H; τS , τS) be the value function

when the investor cannot defer realizing any gains or losses—that is, when the investor must realize

both gains and losses continuously (and thus always short term). We compute this value function

using Proposition 1 for the FR case and using simulation for the FC case. Let V (x, y,B,H; τS , τS)

(respectively V (x, y,B,H; τS , τL)) be the value function when the investor can defer capital gains

realization and the long-term rate is equal to the short-term rate (respectively the long-term rate

is lower than the short-term rate). We use the time 0 CEWGs ∆0 and ∆1 to measure the values of

deferral from these sources respectively, assuming all the initial wealth is in the risk-free asset—that

is,

V (1 + ∆0, 0, 0, 0; τS , τS) = V (1, 0, 0, 0; τS , τS)

and

V (1 + ∆1, 0, 0, 0; τS , τS) = V (1, 0, 0, 0; τS , τL).

For the FR case, Figure 3 plots the CEWG ∆0 from saving the time value of tax (Figure 3(a))

and from realizing gains at a lower rate (Figure 3(b)), for two volatility levels σ = 0.2 and σ = 0.3.

Figure 4 plots the corresponding results for the FC case. Figures 3(a) and 3(b) show that as the

short-term tax rate increases, the values of deferral from saving the time value of tax and from

realizing gains at a lower rate increase significantly, due to a higher tax cost of realizing gains. The

CEWG from saving the time value varies from 2.1% to 5.8% of the initial wealth. Comparison
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Figure 3

The value of deferral: The FR case
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Figure 4

The value of deferral: The FC case
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between Figures 3(a) and 3(b) suggests that for lower-income investors, the value of deferral from

realizing gains at a lower rate is much greater than that from saving the time value. For example,

the CEWG from the former source can be as high as 51.7% of the initial wealth, compared with

5.8% from the latter source. Therefore, by ignoring the difference between the long-term and the

short-term rates, most of the existing literature significantly underestimates the value of deferring

capital gains tax and largely overestimates the effective tax rates for lower-income investors. Figure

3 also shows that as the stock volatility increases, the value of deferral decreases because the investor

invests less in the stock, and thus the dollar amount of capital gains tax deferrable decreases on

average.

Figure 4(a) shows that for the FC case, the CEWG ∆0, which includes the part from saving

the time value and the part from making losses effectively rebatable, ranges from 6.4% to 17.4%

of the initial wealth. To help separate the time value source, we compute the values of deferral

with the interest rate (and thus the time value) set to zero and plot the results using the dotted

lines. Figure 4(a) indicates that the significantly greater value of deferral for the FC case compared

with the FR case mainly comes from the additional benefit of making losses effectively rebatable.

Compared with lower-income investors, for high-income investors, the CEWG ∆1 from having the

lower long-term rate is significantly smaller. This is because as shown in Figure 1, high-income

investors defer even large long-term gains to make incremental losses effectively rebatable. Thus,

these investors realize long-term gains less often and accordingly get smaller benefits from the lower

long-term tax rate. Comparing Figures 4(a) and 4(b) suggests that the main source of the value of

deferring for high-income investors is from making losses effectively rebatable, which differs from

that for lower-income investors.

Similar to Figure 3, the value of deferral from realizing gains at a lower rate also decreases with

volatility. This is because investment in the stock decreases as the volatility increases.
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4. Concluding Summary

In this paper, we propose an optimal tax-timing model that takes into account three important

features of the current tax law: (i) tax rates for long-term positive gains can be significantly lower

than those for short-term positive gains, (ii) capital losses allowed to offset taxable ordinary income

are capped at $3,000 per year, with the rest carried forward indefinitely to offset future gains and/or

income, and (iii) short-term capital gains tax rates apply to both short-term and long-term losses.

In contrast to the existing literature, this model can help explain the puzzle that many investors

not only defer short-term losses beyond one year but also defer even large long-term losses and

long-term gains. We find that the impact of capital gains tax on lower-income investors for whom

most losses are tax deductible can be qualitatively different from that on high-income investors

for whom a majority of capital losses can only be carried forward. In addition, for lower-income

investors, effective tax rates can decrease as short-term capital gains tax rates increase.
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Appendix

A.1 Proof of Proposition 1

Let

Wt = xt + yt − τS (yt −Bt) .

It is easy to verify that

dWt = [(1− τi) rxt − ct + ((1− τS)µ+ (1− τd) δ) yt] dt+ (1− τS)σytdwt (A-1)

because τ
(

H
B

)

= τS . In order to never defer any capital gains tax, the investor needs to liquidate

the entire stock holdings before making any purchase or sale; it follows that yt = Bt, xt = Wt − yt.

Problem (8) then reduces to a classic Merton’s consumption-investment problem with interest rate

(1− τi) r, wealth process following Equation (A-1), and stock prices following

dSt

St
= [(1− τS)µ+ (1− τd) δ] dt+ (1− τS)σdwt.

It is well known that Merton’s problem’s optimal consumption and investment strategy is as follows:











c∗t
Wt

= α
1
γ ν−

1−γ
γ ,

y∗t
Wt

= (1−τS)µ+(1−τd)δ−(1−τi)r

γ(1−τS)
2σ2

,

with ν solving Equation (12), which implies the value function (νW )1−γ

1−γ . It is straightforward to

show that Equation (12) has a unique positive root under the condition that ρ > 0.

A.2 Proof of Proposition 2

Let us start from HJB Equation (10) for V (x, y,B,H) . Note that by Equation (10), we have
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−Vx + Vy + VB ≤ 0.

On the other hand, by Equation (10), because ω = 1, we always have

yVx − yVy − yVB −HVH ≤ 0, for B > y.

Note that if τS = τL, the original problem degenerates to a single tax-rate problem; therefore, the

value function V is independent of the holding time H—that is, VH = 0. So,

Vx − Vy − VB = 0 for B > y,

when H = 0 or τS = τL, which implies continuous trading if B > y.

We will restrict attention to B > y. In this region, we have

V (x, y,B, 0) = (x+ y)1−γζ (θ) , θ =
x+ y

x+B
,

for some function ζ(·). Plugging into HJB Equation (10), we have

Lζ = 0 in 0 < θ < 1,with (A-2)

ζ(0) =
ν1−γ

1− γ
, ζ(1) =

M1−γ

1− γ
, (A-3)

where ν solves Equation (12), M is such that Φ(z, 1, 0) = (M(z+1))1−γ

1−γ ,

Lζ =
α(c∗)1−γ

1− γ
+

(1− α)λ

1− γ
+

1

2
σ2(π∗(θ))2θ2ζθθ +

{

σ2(π∗(θ))2 (1− γ)

+ [(1− τi) r (1− π∗(θ)) + (1− τd) δπ
∗(θ)− c∗] (1− θ) + µπ∗(θ)

}

θζθ
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+

{

[

(1− τi) r (1− π∗(θ)) + (µ+ (1− τd) δ) π
∗(θ)−

1

2
γσ2(π∗(θ))2 − c∗

]

(1− γ)

−β − λ

}

ζ, and c∗ = [(1− θ) θζθ + (1− γ) ζ]−1/γ α1/γ ,

where

π∗(θ) =
[(1− τd) δ − (1− τi) r] θ

2ζθ − [µ+ (1− τd) δ − (1− τi) r] [θζθ + (1− γ) ζ]

σ2(θ2ζθθ + 2 (1− γ) θζθ − γ (1− γ) ζ)
. (A-4)

Let π ≡ y
x+y . Note that because θ = 1

1−π+bπ , after solving for the function ζ, we can solve for

the optimal boundary π∗∗(b) using the equality π∗( 1
1−π∗∗+bπ∗∗ ) = π∗∗.

A.3 Verification Theorem

We now present the verification theorem.

Proposition 3. (Verification Theorem). Let Φ (z, b, h) be a solution to HJB Equation (11) satis-

fying certain regularity conditions. Denote ∂B = NT ∩BR and ∂S = NT ∩ SR. Define

V (x, y,B,H) = y1−γΦ

(

x

y
,
B

y
,
H

B

)

.

Assume that for any admissible controls, (V (xt, yt, Bt,Ht))t≥0 is uniformly integrable. Then

V (x, y,B, 0) equals the value function as defined in Equation (8), and the optimal policy is given

by:

1. optimal consumption: c∗ = y∗t

(

Φz(
x∗t
y∗
t
,
B∗
t

y∗
t
,
H∗

t
B∗
t
)

α

)− 1
γ

with (x∗t , y
∗
t , B

∗
t ,H

∗
t ) being the solution of

Equations (3)–(6) given the optimal trading and consumption strategy (M∗
t , I

∗
t , c

∗
t ).

2. optimal trading: if ω = 1, b > 1, and h = 0, then continuous trading to keep the fraction

π∗∗(b) (as defined below (A-4)) of wealth in stock; otherwise,
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(a) sell strategy M∗
t :

M∗
t =

∫ t

0
1{(

x∗
ξ

y∗
ξ
,
B∗
ξ

y∗
ξ
,
H∗

ξ

B∗
ξ

)

∈∂S

}dM∗
ξ ;

(b) buy strategy I∗t :

I∗t =

∫ t

0
1{(

x∗
ξ

y∗
ξ
,
B∗
ξ

y∗
ξ
,
H∗

ξ

B∗
ξ

)

∈∂B

}dI∗ξ .

Proof of Proposition 3. The proof is similar to that in Davis and Norman (1990) and Cuoco

and Liu (2000). Here we provide only the main steps for the proof.

Define

Nt =

∫ t

0
e−(β+λ)s

(

αu(cs) + (1− α)λu

(

f

(

xs, ys, Bs,
Hs

Bs
; ι

)))

ds

+e−(β+λ)tV (xt, yt, Bt,Ht). (A-5)

Let M c
t and Ict be the continuous parts of Mt and It, respectively, and ∆Ms = Ms −Ms− ∈ (0, 1]

and ∆Is = Is − Is− be the discrete jump at time s. An application of the generalized version of

Ito’s lemma implies that

Nt =

N0 +

∫ t

0
e−(β+λ)s(1{Hs<h̄Bs}BsVH + L2V )ds

+

∫ t

0
e−(β+λ)s

(

f

(

0, ys, Bs,
Hs

Bs
; 1

)

Vx − ysVy − (Bs − ω(Bs − ys)
+)VB −HsVH

)

dM c
s

+
∑

0≤s≤t

e−(β+λ)s
(

V (xs− + f

(

0, ys−, Bs−,
Hs−

Bs−
; 1

)

∆Ms, ys− − ys−∆Ms,

Bs− − (Bs− − ω(Bs− − ys−)
+)∆Ms,Hs− −Hs−∆Ms)− V (xs−, ys−, Bs−,Hs−)

)

+

∫ t

0
e−(β+λ)s(−Vx + Vy + VB)dI

c
s

+
∑

0≤s≤t

e−(β+λ)s
(

V (xs− −∆Is, ys− +∆Is, Bs− +∆Is,Hs−)− V (xs−, ys−, Bs−,Hs−)
)

+

∫ t

0
e−(β+λ)sσysVydws, (A-6)
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where

L2V =
1

2
σ2y2Vyy + µyVy + ((1− τi)rx+ (1− τd)δy − c)Vx − (β + λ)V

+αu(c) + (1− α)λu

(

f

(

x, y,B,
H

B
; ι

))

.

First, we show that the fourth term is nonpositive for any feasible trading strategy. By the mean-

value theorem, there exists 0 ≤ m ≤ ∆Ms ≤ 1 such that the fourth term is equal to:25

∑

0≤s≤t

e−(β+λ)s

(

f

(

0, ys−, Bs−,
Hs−

Bs−

; 1

)

Vx − ys−Vy − (Bs− − ω(Bs− − ys−)
+)VB −Hs−VH

)

∆Ms

=
∑

0≤s≤t

e−(β+λ)s
f
(

0, ym, Bm, Hm

Bm

; 1
)

Vx − ymVy − (Bm − ω(Bm − ym)+)VB −HmVH

1−m
∆Ms

≤ 0, (A-7)

where Vx, Vy, and VB are evaluated at (xm, ym, Bm,Hm) with

xm = xs− + f (0, ys−, Bs−, hs−; 1)m, ym = (1−m)ys−,

Bm = Bs− − (Bs− − ω(Bs− − ys−)
+)m,

Hm = (1−m)Hs−,

the second equality can be easily verified for (i) ω = 0 or Bs− ≤ ys− and (ii) ω = 1 and Bs− > ys−,

and the inequality follows from HJB Equation (10). By similar argument, we have

∑

0≤s≤t

e−(β+λ)s
(

V (xs− −∆Is, ys− +∆Is, Bs− +∆Is,Hs−)− V (xs−, ys−, Bs−,Hs−)
)

≤ 0.

Then Nt is a martingale under the proposed strategy and a supermartingale for any feasible

strategy because V satisfies HJB Equation (10), dM c
t ≥ 0 and dIct ≥ 0 for any feasible Mt and It,

25 If m = 1, the fourth term is also nonpositive because selling the entire position is a feasible strategy.
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and thus the second, the third, and the fifth terms are nonpositive for any feasible trading strategy

and equal to zero for the proposed one; the fourth and the sixth terms are equal to zero for the

proposed strategy and nonpositive for any feasible trading strategy by the above argument, and

the last term is a martingale for any feasible strategy due to the lognormal distributed stock price

and the boundedness of Vy.

We then have

V (x0, y0, B0,H0)

= N0 ≥ E[NT ]

= E
[

∫ T

0
e−(β+λ)s

(

αu(cs) + (1− α)λu(f(xs, ys, Bs, hs; ι))
)

ds

+e−(β+λ)TV (xT , yT , BT ,HT )
]

(A-8)

for any feasible strategy (ct,Mt, It), with equality for (c∗t ,M
∗
t , I

∗
t ). Taking the limit as T → ∞ and

using the transversality condition

lim
T→∞

e−(β+λ)T V (xT , yT , BT ,HT ) ≥ 0,

with equality for the proposed strategy, which follows from applying Ito’s lemma to the discounted

value function e−(β+λ)tV (xt, yt, Bt,Ht), the HJB equation, and the boundedness of Φ inside the

no-transaction region, we get the desired result.

A.4 The algorithm of finding the solution numerically and its convergence

We use the following iterative algorithm to solve for Φ:

1. Set

M0 = initial guess, i = 0.
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2. Given Mi, for ω = 0 we denote

Gi (z, b, h) =
(Mif (z, 1, b, h; 1))1−γ

1− γ
, b > 1

and for ω = 1,

Gi (z, b, h) = (z + 1)1−γ ζ

(

z + 1

z + b

)

, b > 1

where ζ is obtained by solving Equation (A-2) with (A-3) and ζ(1) =
M1−γ

i

1−γ .26

For b large enough, set boundary condition Φ(z, b, h) = Gi(z, b, h) and for h ≤ h̄ solve

max

{

1{h<h̄}Φh + L1Φ,

(1− γ)Φ− (z + 1)Φz + (1− b)Φb −
h

b
Φh,

− (1− γ) Φ + f (z, 1, b, h; 1) Φz + ω (b− 1)+
(

Φb −
h

b
Φh

)

}

= 0. (A-9)

Denote the solution as Φi.

3. Set

Mi+1 =

(

(1− γ) sup
k∈(−1,+∞)

(k + 1)γ−1 Φi (k, 1, 0)

)1/(1−γ)

.

4. If |Mi+1 −Mi| < tolerance, then stop and set Φ = Φi; otherwise, set Mi = Mi+1, i = i + 1,

and go to Step 2.

We show next as long as the initial guess M0 is small enough,27 the above iterative procedure

yields a monotonically increasing sequence {Mi}i=1,2,....

For ω = 0 denote

Ḡi(z, b, h) =
(Mif (z, 1, b, h; 1))1−γ

1− γ
,

26 See the proof of Proposition 2 for justification.
27 For example, one can set M0 = ν, where ν solves Equation (12) with ρ = β + λ− (1− γ)(1− τi)r, corresponding to

the feasible strategy of investing only in the risk-free asset.
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and for ω = 1

Ḡi (z, b, h) =















(Mif (z, 1, b, h; 1))1−γ

1− γ
, b ≤ 1

(z + 1)1−γ ζ

(

z + 1

z + b

)

, b > 1,

where i ≥ 0.

We start from M0. Because Ḡ0(z, b, h) satisfies

(1− γ)Φ− (z + 1)Φz + (1− b)Φb −
h

b
Φh = 0, (A-10)

it is a subsolution to Equation (A-9) with boundary condition

Φ(z, b, h) = G0(z, b, h)

for b large enough. Because Φ0 is its solution, by the comparison principle we have

Φ0(z, b, h) ≥ Ḡ0(z, b, h).

As a result, from Step 3,

M1 =

(

(1− γ) sup
k∈(−1,+∞)

(k + 1)γ−1Φ0 (k, 1, 0)

)1/(1−γ)

≥

(

(1− γ) sup
k∈(−1,+∞)

(k + 1)γ−1 Ḡ0 (k, 1, 0)

)1/(1−γ)

= M0.

By similar arguments on Ḡi and Φi, we can also prove that

Mi+1 ≥ Mi.
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Hence, {Mi}i=1,2,... is a monotonically increasing sequence. For convergence, it remains to find an

upper bound of the sequence.

Let Φ̃ (z, b, h) be the solution to HJB Equation (11), as given in the verification theorem. For any

i ≥ 0, we see from the first part of the proof that Ḡi(z, b, h) satisfies Equation (A-10). Therefore,

it is a subsolution to the transformed Equation (11). By applying the maximum principle (e.g.,

Friedman 1982), we see that

Ḡi(z, b, h) ≤ Φ̃(z, b, h) for all z, b, h, i.

Therefore,

M1−γ
i

1− γ
≤ sup

k∈(−1,+∞)
(k + 1)γ−1Φ̃ (k, 1, 0) ,

or equivalently,

Mi ≤

(

(1− γ) sup
k∈(−1,+∞)

(k + 1)γ−1Φ̃ (k, 1, 0)

)1/(1−γ)

for all i, which is as desired.

A.5 Is the assumption of average basis and average holding period a good

approximation?

To keep tractability, we approximate the exact basis and exact holding period with the average

basis and average holding period of the current position, respectively. If an investor always holds

a single cost basis, then our approximation would be without any error. Thus, the finding of

DeMiguel and Uppal (2005) that investors rarely hold more than one cost basis suggests that our

assumption might be reasonable. However, DeMiguel and Uppal (2005) restrict their analysis to an

annual trading frequency. With a higher trading frequency, as we allow, our approximation might

not work as well. To address this concern, we extend DeMiguel and Uppal to examine whether our

approximation is reasonably accurate in terms of an investor’s utility loss from the approximation.

Because always keeping a single cost basis (by liquidating the entire position before buying any
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additional shares) is a feasible strategy in both the exact-basis and exact-holding-time model and

the average-basis and average-holding-time model, an investor’s utility in the single-basis model is

bounded by the utilities in the two former models. In addition, when the upper bound h̄ of the

average holding period is equal to the long-term threshold L, the utility in the average-basis and

average-holding-time model is smaller than that in the exact-basis and exact-holding-time model.28

Because computationally it is much more tractable to compare the single-basis model with the

exact-basis and exact-holding-time model, in the following we show that the utility loss from the

single-basis model compared with the exact-basis and exact-holding-time model is small, which

implies that the utility loss from the average-basis and average-holding-time model compared with

the exact-basis and exact-holding-time model is even smaller.

A.5.1 The exact-basis model versus the single-basis model. First, let us give a brief

introduction to the discrete-time exact-basis model DeMiguel and Uppal (2005) proposed.

If m is the number of discrete time points, we have time points ti = i∆t, i = 0, 1, ...,m with

∆t = T/m. Let Ci, ci, Si denote cash in bank, consumption, and stock price, respectively, at time

ti. At each time point, the investor needs to determine stock holdings in addition to consumption.

To keep track of the exact basis, we introduce the variable Nj,i to represent the number of shares

bought at time tj and held at time ti, where j = 0, 1, ...,m and i = j, ...,m. When short sales are

not optimal, such as when the risk premium is positive, we have

Nj,i ≥ Nj,i+1 ≥ ... ≥ Nj,m ≥ 0 (A-11)

28 Intuitively, in an average-basis model, an investor is effectively forced to liquidate shares proportionally across all
tax bases in the current position while it is better to first liquidate the shares with the greatest basis. Therefore,
adopting an average-basis rule makes an investor worse off. In contrast, an average-holding-time rule may make an
investor better off because some short-term gains can potentially be realized at the long-term rate. However, as the
upper bound h̄ of the average holding period decreases, this advantage of the average-holding-time rule decreases
and can become a disadvantage. For example, if h̄ = 1, then unless all shares have long-term status, any gain will
be taxed at the short-term rate, and thus the investor is worse off with the average-holding-time rule. Numerical
results reveal that the utility differences among the cases with h̄ = 1, 1.2, 1.5, 2, 10 are negligible. Therefore, with the
parameter values we used in our analysis, the utilities in our model are also smaller than those in the exact-basis and
exact-holding-time model.
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Table 4

CEWL of the suboptimal single-basis strategy relative to the optimal exact-basis

strategy

∆t = 1/2, T = 4 ∆t = 1/3, T = 3
Parameter values Single-basis CEWL Single-basis CEWL

Default 0.00017% 0.03300%

µ = 0.04 0.00000% 0.00960%

µ = 0.06 0.00079% 0.39000%

σ = 0.15 0.00130% 0.55000%

σ = 0.25 0.00000% 0.00920%

τS = 0.30 0.00059% 0.02600%

τS = 0.25 0.00100% 0.02000%

τL = 0.20 0.00060% 0.02700%

τL = 0.25 0.00110% 0.02100%

Default parameters: µ = 0.05, σ = 0.20, r = 0.01, τS = 0.35, τL = 0.15, γ = 3, and β = 0.01.

for any j ≤ i and i ∈ {0, 1, ...,m} .

Given the trading and consumption strategy {Nj,i, ci}i=0,...,m;j=0,...,i , the cash amount at time

ti becomes

Ci = Ci−1e
r∆t − ci −Ni,iSi +

i−1
∑

j=0

(Nj,i−1 −Nj,i) [Si − (Si − Sj) τ (ti − tj)] (A-12)

for any i ≥ 1, where τ (·) is the tax rate as given in Section 2. We aim to choose {Nj,i, ci} to

maximize

E

[

m
∑

i=1

e−βti
c1−γ
i

1− γ

]

(A-13)

subject to (A-11), (A-12), and the solvency constraint

Ci +

i
∑

j=0

Nj,i [Si − (Si − Sj) τ (ti − tj)] ≥ 0 for any i.

For further discretization, as in DeMiguel and Uppal (2005), we assume that the stock price S
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follows a binomial tree process. Then, the problem can be formulated as a constrained optimization

problem that can be solved by the Sparse Nonlinear Optimizer algorithm (SNOPT; see DeMiguel

and Uppal 2005). It should be emphasized that the problem is strongly path-dependent and leads

to 2i+1 states at time ti. As a consequence, it is time consuming and can work only for a small

number of time steps.

The single-basis model assumes that all stock holdings should be sold before purchase. Hence

we need to add the following constraints

Ni,i

i−1
∑

j=0

Nj,i = 0, ∀i.

However, the solution to the optimization problem with the additional nonlinear constraints is not

accurate enough to examine the wealth loss of the single-basis model from the exact-basis model.

Hence, we use the following suboptimal single-basis strategy that clearly cannot be better than

the optimal single-basis strategy: (i) if the second cost basis occurs in the optimal strategy with

exact basis, we first sell all stock holdings to realize capital gains or losses and then buy back some

stock to reach the same stock holding as in the strategy with exact basis; and (ii) the consumption

remains unchanged. Using a suboptimal single-basis strategy biases against us in finding the small

difference between the two models.

Table 4 reports the CEWL from following the suboptimal single-basis strategy in terms of the

percentage of the initial wealth. It shows that the loss relative to the optimal exact-basis strategy is

small and seems almost negligible, even for the suboptimal single-basis strategy. Because a single-

basis strategy is a feasible but suboptimal strategy in the average-basis and average-holding-time

model, this seems to suggest that the average-basis and average-holding-time model is a reasonably

good approximation.
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