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1 Introduction

Data has emerged as a highly productive asset. It is non-rival: one firm’s use of data does not

diminish its availability for others, allowing data to be utilized by multiple firms simultaneously

(Jones and Tonetti, 2020). Furthermore, data exhibits externalities: information collected by one

firm can benefit other firms. Data on a firm’s customers can be useful for profiling other firms’

customers by revealing underlying economic forces or as training data for prediction models (Choi

et al., 2019; Ichihashi, 2021; Acemoglu et al., 2022). Data non-rivalry, combined with externality,

significantly expand the potential uses of a firm’s data, often transcending industry boundaries.

In this paper, we explore several key questions: How is data collected by one firm shared

with others? What is the scope of data sharing? What are the economic implications, particularly

the impact of data sharing on firms’ decision-making? How do privacy regulations influence the

economics of data sharing, and what unintended consequences might arise? Finally, we investigate

which firms are systemically important in the data economy. While these firms likely contribute

significant amounts of data to other firms, their systemic importance cannot be simply determined

by size alone; the network topology of data flows across firms plays a critical role.

We trace inter-firm data flows originating from mobile applications (apps), which have be-

come the primary channels for data collection in the economy. Our sample contains 1,031 app-

owning public firms that account for more than 60% of the total assets of Computat firms. Firms

may operate one or multiple mobile apps. These apps collect data and transmit it to Software De-

velopment Kits (SDKs) specializing in data aggregation and analytics. A crucial function of SDKs

is merging information from various apps associated with the same consumer, creating compre-

hensive customer profiles that can be utilized by multiple firms and across industries. By sharing

data with SDKs, firms gain access to these valuable signals for customer profiling in return.

Using granular information on app-level SDK installations, we construct measures of data
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connectedness based on firms’ overlap in SDK usage. Specifically, two firms are considered con-

nected when a common set of data-analytics SDKs are installed on their apps, with the degree

of connectedness increasing in the SDK overlap. This approach enables us to construct the first

measure of inter-firm data sharing and to map out the network structure of data flows.

The signals that connected firms receive from SDKs contain data from one another. When

one firm gains more customers, it collects more data, which is shared through the SDKs with its

connected firms. Being more informed about its customers allows the connected firms to acquire

more customers and improve revenue generation. Our empirical analysis confirms this dynamic.

We find that data sharing generates comovements in firms’ operational performances. The eco-

nomic magnitude is large, more than doubling that of product similarity measure from Hoberg

and Phillips (2016) in explaining the operational performance comovement. Additionally, data-

connected firms exhibit stock-return correlations that cannot be explained by standard asset pricing

risk factors or other common exposures, such as product overlap or common analyst coverage.

Our paper is the first to uncover this new form of economic linkage. Recently, with rising

consumer awareness of privacy concerns, data privacy regulations, such as GDPR in Europe and

CCPA in the U.S. (California), have imposed strict rules on data collection and sharing. We find

that one unintended consequence of these policies is a weakening of performance comovement be-

tween data-connected firms. In a difference-in-differences framework, we explore the introduction

of Apple’s user privacy framework, App Tracking Transparency (ATT), as the policy shock. By

restricting firms’ ability to share data and limiting SDKs’ capacity to merge data from different

firms into unified customer profiles, ATT curtails inter-firm data flows. We find that performance

comovement induced by data connectedness significantly weakened after ATT.

By examining the impact of ATT, we not only shed light on the consequences of upcoming

privacy regulations from both private and public sectors but also validate that cross-firm overlap
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in data-analytics SDKs is fundamentally about data sharing. Importantly, ATT does not influence

other forms of firm overlap, such as product overlap, contribute to performance comovements.

We do not take a position on whether data-induced comovement in firm performance is

inherently efficient. On one hand, data sharing can facilitate the flow of information across firms,

making them more informed about customer demand, enhancing productivity, and improving the

match between producers and consumers. On the other hand, information transmission is not

free from frictions, even when supported by state-of-the-art statistical methods. What if the data

being shared is noise that a firm collects from customer activities? The data-sharing network can

amplify the impact of such noise, embedding it into the signals received by the connected firms.

Consequently, data-induced comovement might reflect inefficient propagation of noisy signals.

Motivated by the evidence on data sharing, we develop a dynamic network model of data

economy that replicates the data-induced comovements in firms’ performances and the ATT im-

pact. In our model, firms accumulate raw data from customer activities, which is then aggregated

into composite signals on consumers. Firm i is connected to firm j when its signal depends on

firm j’s data, represented by the loading γij . An increase in γij leads to stronger performance

comovements between firms i and j. These pairwise data connections are set to their empirical

counterparts, i.e., the overlap of firms’ data-analytics SDKs as measured from the data.

For each firm, the composite signal for customer profiling plays two roles. First, it helps

the firm generate customer engagement, which in turn translates into an increase in customer cap-

ital and product demand.1 Moreover, more customer engagement creates more data, leading to

self-perpetuating data growth as in Farboodi and Veldkamp (2021). Importantly, the additional

data also feeds into other firms’ signals and contributes to the build-up of their customer capital.

Therefore, through data collection and sharing, the growth of data and customer capital becomes

1One channel of customer capital build-up is that data improves firm-consumer match (Gourio and Rudanko, 2014).
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interconnected across firms, generating a channel of comovement and persistent shock propaga-

tion.

The second role of the composite signal relates to a critical intertemporal trade-off faced

by firms. In our model, firms can adjust their product designs to prioritize either monetization

or customer engagement. For instance, a software company might generate higher profits per

interaction with customers by moving more features behind paywall, but this approach reduces the

overall level of customer interaction. While this appears to be a static trade-off between intensive

and extensive margins, it has dynamic implications: prioritizing monetization reduces customer

engagement and thereby limits data accumulation. The composite signal mitigates this negative

impact. Intuitively, when a firm has a deeper understanding of its customers, it can design products

that balance profitability but still maintain customer engagement; likewise, if the firm prioritizes

customer engagement and data collection, the negative impact on profitability is mitigated by the

composite signal for customer profiling that loads its own raw data and data from other firms. In

summary, the composite signal for customer profiling alleviates the tension in the intertemporal

trade-off between current profitability and data accumulation for the self-perpetuating growth.

This mechanism gives rise to intriguing product-design dynamics. When one firm prioritizes

customer engagement, the data it generates enables its connected firms to boost customer engage-

ment without significantly compromising profitability. As a result, the connected firms choose to

stimulate customer engagement as well and collect more data. Conversely, when a firm prioritizes

monetization, its reduced data collection and diminished data spillover makes it harder for the con-

nected firms to balance profitability and customer engagement. For any given level of profitability,

these connected firms have to sacrifice more customer engagement and collect less data as well.

In equilibrium, firms’ product-design decisions exhibit “herding” behavior. Empirically, we

find that a firm’s product-design choices are strongly influenced by those of its data-connected
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peers, even after accounting for other common exposures, such as product overlap. Furthermore,

herding in product design among data-connected firms is significantly weakened by the introduc-

tion of ATT, indicating that this empirical pattern is driven by data sharing.2

In our model, data functions as productive capital, analogous to the role of capital in classic

investment theories (Hayashi, 1982; Abel and Eberly, 1994), with a firm’s product-design choices

mirroring investment decisions. Specifically, the marginal q of a firm’s data—the derivative of

its value function with respect to its data stock—drives the decision on whether to prioritize cus-

tomer engagement and data collection in product design. However, there are two critical distinc-

tions. First, data investment features a positive externality, in contrast to the traditional investment

dynamics where one firm’s investment often crowds out others’ investment.3 Second, firms’ in-

vestment decisions are directly interconnected through data sharing in our model. A firm’s data

marginal q incorporates the expected trajectories of data inflows from other firms (indegree net-

work externality) but disregards the data outflows to other firms (outdegree network externality).

This internalization of indegree externality creates strategic complementarity, or herding behavior,

among firms. Meanwhile, the failure to internalize outdegree externality leads to under-investment.

In the final part of our paper, we examine systemic risk in the data economy. Interconnect-

edness implies that shocks to one firm propagate to others, with shocks to systemically important

firms having the greatest impact on the entire system. Using cyberattacks as our empirical setting,

we provide direct evidence of how data sharing facilitates shock propagation. Intuitively, a cy-

berattack reduces the focal firm’s data stock, impairs its ability to collect data, and more broadly

diminishes its operational efficiency that underpins customer engagement and data acquisition.

We find that the firm’s data-connected peers experience significantly larger deterioration in opera-

2We focus on how a nonfinancial firm’s incentive to generate data depends on other firms’ choices. Farboodi and
Veldkamp (2020) study how a trader produces different types of data depends on other traders’ information choices.

3For example, investment by one firm may increase the cost of investment inputs and cost of financing or intensify
product-market competition that other firms face (e.g., Asriyan et al., 2024).
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tional and stock-market performance than firms not connected through data sharing or connected

through other economic linkages. These findings underscore the importance of examining the

network structure of data sharing to trace the ripple effects of cyberattacks and other shocks.

Our findings so far have revealed the spillover of shocks from focal firms to those that are

directly connected through data sharing. The reduced-form empirical strategy omits two critical

aspects of network externality, the higher-order externalities and persistent impact over time. The

impact on directly connected firms is likely to transmit further to their data-sharing counterparts,

resulting in second and higher-order cascading effects. Additionally, since data generates self-

reinforcing growth as in Farboodi and Veldkamp (2021), shocks have a persistent effect as it not

only affects the current stock of data but also shifts the trajectory of data growth in the future.

Based on our calibrated model, we develop metrics of firms’ systemic importance that incor-

porates data spillover effects through both direct and indirect connections and over multiple time

horizons. A key input is the data-sharing network that we measure directly from our sample.

Specifically, we solve for the present value of aggregate cash flows in the economy (aggre-

gate valuation) as a function of all firms’ data stocks (the state variables). This aggregate valuation

captures all pathways of network propagation, accounting for the impact of any firm’s data on the

rest of the economy and on aggregate cash flows across all time horizons.4 We decompose ag-

gregate valuation into individual firms’ contributions and demonstrate that a firm’s contribution to

aggregate valuation can differ significantly from its own valuation. For instance, before the intro-

duction of ATT, Meta (formerly Facebook) had a ratio of aggregate valuation contribution to its

own valuation of 2.5, indicating that removing Meta from the data economy would result in a loss

of aggregate cash flows equivalent to 2.5 times Meta’s own valuation. After ATT, this ratio de-

clined to 1.2. These findings highlight that under data sharing, certain firms become systemically

4Our valuation framework is forward-looking and properly accounts for network externalities, in contrast to the
cost-based method of valuing intangible capital. Veldkamp (2023) summaries different methods of valuing data.
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important to the data economy in ways that their market value alone does not fully capture.

To identify systemically important firms, we rank the firms in our sample based on their

contributions to aggregate valuation (valuation centrality) and their contributions to aggregate val-

uation fluctuations (risk centrality). Our analysis again reveals that systemic importance is not

solely determined by firm size but is heavily influenced by a firm’s position within the data-sharing

network, which dictates its data inflows from other firms and outflows to connected peers.

Beyond quantifying firms’ systemic importance in the data economy, our model provides

several novel theoretical insights. First, we show that in the absence of data sharing, firms’ valua-

tions in equilibrium reduce to the standard Gordon growth formula. However, under data sharing,

a network-augmented Gordon growth formula emerges, where firm-level growth in valuation is

replaced by a firm’s loading on the “community growth” of the entire data economy. Further-

more, each firm’s valuation can be decomposed into contributions from its own data and from

the data of other firms. For any given firm’s valuation, our model offers a framework to evaluate

the substitutability of data from different peer firms, shedding light on the scope of data usage.

Lastly, our analysis suggests that the data-sharing network, by propagating shocks, contributes to

the emergence of a new systematic risk factor in the stock returns of data-driven firms.

Literature. To the best of our knowledge, we are the first to systematically characterize the

complex network of data flows among public firms. Our research demonstrates that firms are not

only linked by conventional economic relationships—such as product market overlap (Hoberg and

Phillips, 2010, 2016, 2018), supply chain connections (Cohen and Frazzini, 2008; Menzly and

Ozbas, 2010), shared analyst coverage (Ali and Hirshleifer, 2020), geographic exposure (Parsons

et al., 2020), or technological proximity (Bloom et al., 2013; Liu and Ma, 2021)—but also by the

exchange and use of data. Our contribution lies in documenting how this new type of economic
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linkage profoundly impacts firm valuation and stock comovement in the digital era.

Our paper contributes to the literature on the non-rival nature of intangible capital (e.g., Mc-

Grattan and Prescott, 2009, 2010; Varian, 2018; Jones and Tonetti, 2020; Cong et al., 2021; Crouzet

et al., 2022; Liu et al., 2023) and is most related to Crouzet et al. (2024). Crouzet et al. (2024) study

the scope of intangible capital usage and highlight both the positive and negative effects of broad-

ening the scope on economic growth. In our paper, the scope of intangible (data) usage is reflected

in the data-sharing network. While Crouzet et al. (2024) emphasize the within-firm usage of intan-

gibles, our focus is on cross-firm data sharing. We directly measure the scope of data usage and

embed the network structure in an otherwise canonic model of data-driven firm growth (e.g., Be-

genau et al., 2018; Jones and Tonetti, 2020; Farboodi and Veldkamp, 2021). Broadening the scope

of data usage benefits growth. Reducing the scope, for example, through regulations on cross-firm

data sharing, dampens growth and the valuation of data-driven firms in line with the empirical find-

ings on the ATT impact (Bian et al., 2021).5 We also highlight that data sharing facilitates growth

but also propagates shocks by synchronizing firms’ behavior, thus amplifying aggregate volatility.

This harmful effect differs from that in Crouzet et al. (2024) who connect an increase in the scope

of intangible usage with a reduction in entrepreneurship. Based on our findings, an unintended

consequence of privacy regulations is to reduce the comovement of firms’ performances, which in

turn moderates the aggregate fluctuation of data economy.

Our paper also contributes to the literature on measuring and valuing intangible capital (e.g.,

Eisfeldt and Papanikolaou, 2013; Gourio and Rudanko, 2014; Kogan et al., 2017; Peters and Taylor,

2017; Kelly et al., 2021; Bhandari and McGrattan, 2021; Dou et al., 2021; Ewens et al., 2024).

How to value data as a productive asset has become an increasingly important question (Veldkamp,

2023). We highlight the limitations of cost-based methods for valuing data assets and emphasize

5Bian et al. (2021) document a -3% cumulative abnormal return of data-reliant firms in the month following ATT.
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the importance of incorporating the cross-firm scope of data usage in the valuation framework.

The value of data assets—defined as the present value of data-generated cash flows—depends

significantly on the extent to which data is shared and utilized within the whole data economy.

Previous work on measuring data also takes an indirect approach by focusing on firms’ decisions to

obtain complementary labor inputs (Abis and Veldkamp, 2023; Corhay et al., 2024) or the outcome

of data usage (e.g., Farboodi et al., 2024; Eeckhout and Veldkamp, 2022).

In our model, firms’ decision-making and valuation are interconnected through a network ad-

jacency matrix of data sharing, and the equilibrium conditions map to a spatial structure (de Paula,

2017) as in models of social connections (e.g., Glaeser and Scheinkman, 2000; Ballester et al.,

2006; Graham, 2008; Calvó-Armengol et al., 2009; Bramoullé et al., 2009; Blume et al., 2015;

Fogli and Veldkamp, 2021) Spatial models have been recently adopted in financial economics

(Cohen-Cole et al., 2014; Ozdagli and Weber, 2017; Herskovic, 2018; Herskovic et al., 2020;

Jiang and Richmond, 2021; Eisfeldt et al., 2022, 2023; Li et al., 2023). Our paper is the first to

analyze the spatial structure of data flows. To characterize data accumulation over time, our model

is fully stochastic and dynamic. Following Diebold and Yılmaz (2014), Ballester et al. (2006), and

Denbee et al. (2021), we decompose aggregate valuation of cash flows and its volatility into firms’

contributions and develop the first metric of firm systemic importance in the data economy.6

On the empirical side, by examining the impact of data regulations (e.g., ATT), we contribute

to the growing body of studies on privacy, especially work focused on privacy regulations such as

the GDPR and ATT. To date, most prior studies have examined the direct effects of data regulations

on firms, including outcomes such as web traffic (Goldberg et al., 2019), firm revenue (Aridor

et al., 2020), innovation and venture investment (Bessen et al., 2020; Janssen et al., 2022; Jia et al.,
6Our metric based on the data-sharing network contributes to the broader literature on measuring systemic risk

(Billio et al., 2012; Acharya et al., 2016; Adrian and Brunnermeier, 2016; Benoit et al., 2016; Bai et al., 2018; Duarte
and Eisenbach, 2021; Greenwood et al., 2015).
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2021), SDK usage in Android mobile apps (Jin et al., 2024), data reliance (Demirer et al., 2024),

and firms’ choice of web technology (Peukert et al., 2022). Research focusing on the impact of

ATT and third-party cookie ban has examined how ATT alters firms’ monetization choices (Kesler,

2023; Aridor et al., 2024), advertising effectiveness (Alcobendas et al., 2023; Aridor et al., 2024;

Wernerfelt et al., 2024), app market concentration (Li and Tsai, 2022), consumer opt-in rates (Kraft

et al., 2023), and financial fraud resulting from excessive data sharing (Bian et al., 2023).7

Few studies examine spillover effects in the data economy. Notably, Aridor et al. (2020)

documents consumer-side spillovers, showing that consumer privacy decisions enable firms to infer

other consumers’ types. Using ATT as a shock to the strength of inter-firm data linkages, our paper

complements this work by documenting firm-side data externalities, demonstrating that firms’ data

collection and product design choices affect other firms within the data-sharing network.

Our paper also relates to the burgeoning literature on cyberattacks. Crosignani et al. (2023)

document the propagation of cyber attacks through firms’ supply chains. Akey et al. (2023) ex-

amines the impact of cyber events on firm value. Our paper adds to this literature by documenting

the propagation of the negative impact of cyberattacks through the data network. To this end, our

paper also relates to the broader literature on transmission of different shocks in inter-firm pro-

duction networks, including productivity disturbances (Boehm et al., 2019; Barrot and Sauvagnat,

2016; Carvalho et al., 2021), financial shocks (Demir et al., 2024), and monetary policy and in-

flation shocks (Auer et al., 2019; Ozdagli and Weber, 2017). We study a new form of shocks and

characterize its transmission in the novel and increasingly important data-driven networks.

7See Johnson (2022) for a review of the literature on GDPR.
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2 Data Sharing Network: Measurement and Evidence

2.1 Institutional background

Data economy and mobile applications. Digital economy has emerged as a key pillar of the

broader U.S. economy. In 2022, the Bureau of Economic Analysis (BEA) estimated its value at

nearly $2.6 trillion, with an annual growth rate of 7.1% since 2017. It now accounts for 10.0%

of U.S. GDP and supports 8.9 million jobs.8 The rise of the digital economy is enabled by the

increasing usage of mobile devices, a trend accelerated during the COVID-19 pandemic when

demand for digital services across work, entertainment, and communication skyrocketed. After

the pandemic in 2022, the average time spent by U.S. adults on mobile devices rose 2.5% year-

over-year to over 4.5 hours per day, compared to just 3 hours and 7 minutes per day spent watching

traditional TV.9 This shift reflects a structural change toward a more digital-centric lifestyle.

Data has become an essential productive asset in the digital economy. Companies rely on

mobile data to understand consumer preferences, customize product offerings, and guide innova-

tion choices. Bian et al. (2021) show that over 60% of apps tracks users across websites, apps, and

offline stores. Binns et al. (2018) report that nearly 90% of Android apps collect user data and en-

able data-sharing with Google. Companies leveraging personal data for targeted advertising—such

as Google and Meta—generated approximately $780 billion in revenue in 2023.10

A key distinction of mobile-collected data is its high connectivity, facilitated by universal

user identifiers like the Identifier for Advertisers (IDFA). Assigned by Apple, IDFA enables app

developers, advertisers, data analytics platforms, and ad networks to track user behavior across

iOS apps, providing a consistent and universal device-level identifier that simplified user tracking

8Source: https://www.bea.gov/data/special-topics/digital-economy
9Source: https://www.emarketer.com/content/us-time-spent-with-connected-devices-2022

10Source: https://www.marknteladvisors.com/research-library/digital-marketing-market.html
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and data sharing.11 In contrast, web-based data relies on fragmented cookie systems managed by

individual websites and advertising networks, which are often blocked by browsers like Safari.

While users can clear or block cookies through browser settings, IDFA offers greater consistency,

making mobile data a more valuable asset for firms.

Firms in the data economy. Driven by the growing importance of mobile apps in data collection

and utilization, we define firms participating in the data economy as those owning at least one

mobile app. Our study centers on U.S.-listed public companies with reliable accounting and stock

performance data, identifying a total of 1,031 firms meeting these criteria.

Firms in the data economy exhibit distinct characteristics from the average firm in the Com-

pustat universe. Figure 1 presents the representativeness of these two sets of firms across and

within industries. Panel A displays the share of data-reliant firms within each of the Fama-French

48 industries, with red bars representing equal-weighted shares and blue bars representing size-

weighted shares. Focusing on the size-weighted shares, data-reliant firms account for more than

50% of the total assets in 24 out of 48 industries, and over 60% of the total assets across all Compu-

stat firms. Panel B further examines the distribution within the data-reliant firm sample, revealing

an over-representation in industries such as Business Services, Retail, and Telecommunications,

and an under-representation in Banks, Finance, and Oil industries, compared to the broader Com-

pustat universe. Additionally, Panel A of Figure 2 shows that, on average, data-reliant firms are

larger. Panel B further highlights that these firms utilize their assets more efficiently to generate

sales, as indicated by their higher asset turnover ratios.

App tracking transparency (ATT). Apple’s App Tracking Transparency (ATT) policy, intro-

duced in April 2021, requires app developers to obtain explicit user consent before tracking user

11The Android counterpart is the Google Advertising ID (GAID), also called the Android Advertising ID (AAID).
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activity across different apps and websites. This policy has directly impacted how firms collect,

share, and use data, particularly within the digital advertising ecosystem, where cross-app tracking

has been essential for delivering personalized ads and optimizing marketing strategies.

Before ATT, firms commonly used software development kits (SDKs)—pre-built software

components integrated into mobile applications that provide various functionalities, including data

collection and sharing—often without needing explicit user consent. ATT disrupts these prac-

tices by restricting the flow of user-level data collected via SDKs. Technically, the policy requires

apps to display a prompt asking for permission to track user activity through the IDFA that was

described above. If the user declines tracking, SDKs are blocked from accessing the IDFA, ef-

fectively disabling across-app user profiling. Without this cross-app identifier, SDKs must rely on

less precise, often anonymized data. This reduced ability to track users limits firms’ capacity to

optimize advertising efficiency and product customization.

Data sharing network. ATT disrupts the use of Identifier for Advertisers (IDFA) as a way to

combine data collected across different apps for customer profiling. SDKs that facilitate such

efforts of customer profiling effectively become data-sharing platforms. Firms share data with

the SDKs, and then by utilizing IDFA, the SDKs generate customer profiles for these firms. Using

such data, the SDKs can also predict new customers’ preferences for companies that seek to expand

their customer base. Data analytics services offered by the SDKs facilitate firms’ advertisement

optimization, product design, technology choices, and other areas of decision making.

Two firms that share data with the same set of SDKs are thus connected as their signals

on customers are based on a common set of data that both firms contribute and is aggregated and

analyzed by the SDKs. Note that even though firms may not share the same customers, information

on one firm’s customers can still be valuable for revealing customer demand of another firm. ATT
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weakens the interconnectedness among firms under data sharing. In Section 2.3, we construct

measures of data interconnectedness for each pair of firms and characterize a network structure of

the data economy. Our measure is based on firms’ overlap in their reliance on data-related SDKs.

We will show that such data connectedness generates comovements across various metrics of firm

performances and that ATT, by dampening the data linkages, reduces performance comovements.

An example of data sharing. We use Amazon and General Motors (GM) to illustrate how data

linkages between the two firms may benefit one another. According to our measure introduced in

Section 2, GM has the highest data linkage with Amazon among all firms, with both companies

using the data-related SDKs offered by Google. GM collects extensive data on consumer behavior

through vehicle purchases, financing, and connected car technologies. By sharing user data with

Google Ads, GM enables Google to refine ad targeting for Amazon.12 For instance, GM’s data on

consumers purchasing EVs or luxury vehicles helps Amazon focus ads on individuals likely to buy

complementary products, such as home EV chargers, smart car accessories, or high-tech gadgets.

This precision targeting enhances Amazon’s ability to convert high-value customers while improv-

ing its inventory planning for automotive-related products, boosting overall sales and profitability.

In return, Amazon shares e-commerce data with Google, which GM leverages to better un-

derstand consumer preferences and market trends. As disclosed in the privacy labels of Amazon’s

iOS mobile app, Amazon uses user-generated product interactions, linked to user identities, for

third-party advertising. Insights into consumer purchasing trends, such as rising demand for EV-

related products, help GM tailor its marketing strategies. This data also informs GM’s product

development and financing offers, in alignment with current consumer trends.

12The GMC app on Apple’s App Store discloses in its privacy labels that it collects and shares location data, contact
information, and user and device identifiers with third parties.

14



2.2 Data sources

AppTopia. AppTopia is an alternative data provider which collects, structures, and models data

about the mobile apps market. We use two products from AppTopia. First, we acquire information

about mobile app characteristics (e.g., category, age) and performance (e.g., downloads, active

users, sessions length). Second, we use their SDK intelligence product, which provides data on the

installation and removal dates of SDKs for each mobile app. An SDK provides tools and libraries

to integrate specific features or services, like analytics or payment systems, into mobile or web

applications. It facilitates app development by offering pre-built components and resources.

Based on the SDK categories defined by Apptopia, we identify the SDKs as data sharing

platforms within the advertising networks, analytics, mobile marketing, and monetization cate-

gories. SDKs in the advertising network category connect apps with advertisers to display ads,

generating revenue through user interaction. SDKs in the analytics category offer insights into

user behavior, app performance, and engagement metrics, facilitating data-driven performance op-

timization. SDKs in the mobile marketing category assist in executing marketing campaigns by

providing tools for user segmentation, messaging, and engagement to boost user acquisition and

retention. SDKs in the monetization category provide revenue generation options, such as sub-

scriptions, in-app purchases, and rewards, often supplementing advertising networks.

We verify the accuracy of each SDK’s functionality by reviewing its documentation and

technical details available through GitHub repositories. To minimize computational complexity,

we focus on the 50 most popular data-related SDKs, ranked by worldwide net installations as

of 2021/04/26. The most popular data-related SDK accumulated 262,209 net installations (i.e.,

installations minus uninstallations), while the 50th most popular SDK accumulated only 4,369 net

installations in the same period, indicating a high level of concentration. Restricting the list to

the top 20 SDKs yields a similarly distributed measure of data connectedness, which we introduce
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later. In addition to this main measure, we also use app category, user overlap between app pairs

to construct measures in firm overlap in the app product markets.

Text-based Network Industry Classifications (TNIC). Horizontal and vertical industry link-

ages are obtained from the Hoberg-Phillips Data Library (Hoberg and Phillips, 2010, 2016; Frésard

et al., 2020). These measures are available at annual frequency.

Factset Revere. Supply chain relationships are constructed from FactSet Revere – Supply Chain

Relationships datasets. For each firm, we observe four types of relationships: customer, supplier,

partner, and competitor. We also construct geographical overlap using the FactSet Revere – Geo-

graphic Revenue Exposure datasets, which offers revenue breakdown by geography and business

segment. Both sets of measures are created at an annual frequency.

USPTO. We construct firms’ technology proximity using data on their patent applications from

the USPTO. For each firm’s patent portfolio, we calculate technology proximity following the

methodology of Jaffe (1986) and Bloom et al. (2013). This measure varies at annual frequency.

Standard financial datasets. Firms with shared financial analysts may exhibit performance co-

movement (Ali and Hirshleifer, 2020). We obtain data on analyst coverage from I/B/E/S. Quarterly

accounting data on firm fundamentals is from Compustat and data on stock prices and market cap-

italization from CRSP. Information on asset pricing factors is from Ken French’s data library.

2.3 Variable construction

Data connectedness. To characterize the data-sharing network, we develop a firm-pairwise mea-

sure for data connectedness. This methodology is akin to the approach taken by Hoberg and
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Phillips (2010, 2016), which develop a product space overlap measure to study competitive inter-

actions among firms; likewise, Bloom et al. (2013) introduce an R&D space overlap measure to

explore the impact of technological proximity on innovation and firm performance. In our case,

we compute the cosine similarity for pairs of firms based on their usage of data-related SDKs.

Specifically, we denote app a’s (from firm i) data collected and shared with any SDK k at

time t as: siakt = miat×diakt, where miat is number of active users of firm i’s app a at time t; diakt

= 1 if this app installs SDK k at time t and 0 otherwise. Aggregating across all apps owned by firm

i at time t, we define the data shared with SDK k at firm-SDK-quarter level as: Sikt =
∑

a∈Ait
siakt

where Ait is the set of apps owned by firm i at time t. We then stack the firm i’s relationship with

each relevant SDK at time t into a K × 1 vector: Sit =
[
Si1t, Si2t, ..., SiKt

]′, where where K is

the total number of SDKs that serve as data-sharing intermediaries. K is set to 50 in the baseline

version. The cosines-similarity between firm i and j in the data space at time t is given by:

ρdataijt =
S′
it · Sjt

|Sit| · |Sjt|
, (1)

where | · | is the Euclidean distance.

We further illustrate the construction of the data connectedness measure using Amazon as

an example. Figure 3 displays Amazon and the 10 firms most closely connected to it through data.

Firms are represented as blue circles, with the circle size corresponding to each firm’s average

monthly active users (MAU). Data-related SDKs are shown as red or yellow rectangles, and the

thickness of the line connecting each firm to an SDK represents the SDK’s relative importance to

the firm, measured by the proportion of the firm’s MAU linked to the SDK. Each of these 10 firms

has a ρdata of approximately 0.6 with Amazon, driven by the share of MAUs connected through two

key SDKs – Firebase and Answers – that are commonly installed by both Amazon and these firms.
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However, their data connectedness with Amazon is not perfect, as each firm has also installed other

data-related SDKs that Amazon has not installed (or vice versa), shown in orange on the graph.

The firms highly connected to Amazon come from a diverse set of industries, including Des-

tination XL, Vipshop, and Hibbett from retail; American Express from business services; Delta

Air Lines from transportation; Mimecast and Vodafone from telecommunications; Morgan Stan-

ley from banking; General Motors from automobiles and trucks; and Strategic Education from per-

sonal services. This variety supports our assertion that the data connectedness measure captures

a novel, unique form of firm linkages, distinct from traditional connections within an industry or

along the supply chain. In our empirical analysis, we control for other forms of interconnectedness.

Other firm linkages. We measure the proximity between two firms across various dimensions,

including product markets, supply chains, innovations, analyst coverage, and geography. While

app user overlap, supply chain relationships and analyst coverage are discrete variables, taking val-

ues of 0 or 1, the remaining proximity measures are continuous variables ranging from 0 to 1. For

all the firm linkages, we use the average value before ATT to interact with ATT in the difference-

in-differences regression, as the post-ATT values may reflect firms’ endogenous response to ATT.

Performance comovement. We measure the performance comovement between two firms by

calculating the correlation across various metrics, including the logarithm of downloads and daily

active users (DAU), quarterly earnings growth, and asset turnover (sales/assets), all computed at a

quarterly frequency.13 For each performance metric, we compute one correlation for periods before

the implementation of ATT in 2021Q2 and another for the periods after the implementation.

We also consider comovement in firm stock returns. For each firm pair, return comovement

13Quarterly earnings growth rate is calculated as 2 ∗ (Net Incomet − Net Incomet)/(Net Incomet + Net Incomet),
instead of (Net Incomet − Net Incomet)/Net Incomet to smooth out volatility.
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is calculated as the correlation between their monthly returns over rolling 12-month windows,

relative to the introduction of ATT in April 2021. These 12-month windows are non-overlapping,

resulting in a total of 7 return correlation values for each firm pair prior to ATT and 3 values after

ATT, as the return data spans from 2014 to 2024.14 we examine three types of returns: raw returns,

abnormal returns based on CAPM, and DGTW-adjusted returns (Daniel et al., 1997).

Non-data SDK usage. Lastly, we construct firm-level variables related to the usage of SDKs

that represent firms’ endogenous product design decisions, ranging from monetization to customer

engagement and data accumulation, as outlined in the model in section 3. For each of the following

SDK categories – payment, security, and customer support – we calculate: 1) the number of unique

SDKs used by a firm, 2) the change in the number of unique SDKs used by a firm, and 3) the

weighted sum of the number of unique SDKs used by peer firms that are connected to the focal

firm in the data space, where the weight is the pairwise data connectedness. The third measure

captures the average product design decision made by the focal firm’s data peers.

2.4 Descriptive statistics

Data-sharing network. In Figure 4, we present the network structure implied by the data con-

nectedness measure. This figure visualizes the network of firms connected through data sharing

using the Fruchterman-Reingold Algorithm. The pairwise data connectedness takes the average

value in 2020. Each node represents a firm, with the firm’s ticker displayed, and the size of the

node corresponds to the firm’s size, proxied by the square root of total MAU (monthly average

users) in 2020. Firms linked by edges are those with strictly positive data connectedness. For read-

ability, we only include firm pairs with data connectedness greater than 0.7, which includes 640

14For example, the three correlations after ATT correspond to the 12-month periods from April 2021 to March 2022,
April 2022 to March 2023, and April 2023 to March 2024.

19



unique firms (72% of all firms active in the data network) and around 6.2% of all firm pairs. We la-

bel the firms that have more than 4.7 million MAU, or the 92th percentile of the MAU distribution,

in an average quarter in 2020. Firms situated at the center typically have more highly-connected

peers. Firms are clustered into different colors as determined by the Fruchterman-Reingold Algo-

rithm. We identify and label the most popular SDK within each cluster of firms.

Google (ticker: GOOGL) and Meta (ticker: META) are the two most influential firms in

the data network, evident from both their node size and central location. Consistent with our

observation that data-reliant firms are overrepresented within the business services industry, many

of these firms are also located near the network center, including Yandex (ticker: YNDX), Twitter

(ticker: TWTR), Unity (ticker: U), and Cheetah Mobile (ticker: CMCM). Also positioned at the

center of the network are firms from other industries, such as AT&T (ticker: T) from telecoms, and

Electronic Arts (ticker: EA) and Roku (ticker: ROKU) from entertainment.

It is important to note that a firm’s size does not always correlate with its network centrality.

For example, large firms like Walmart, Nike, and Netflix remain on the periphery, while many

smaller firms occupy central positions in the network. Other relatively large firms, such as Snap,

Pinterest, Zoom, and Apple, are also excluded from this graph due to their relatively low data

connectedness with other firms.

While these patterns are intuitive, centrality visualized in this graph is only based on the

direct linkages. Data sharing induces interconnectedness of higher orders—firm A’s data is shared

through SDKs with firm B that in turn may share data with firm C. Moreover, data spillover has

persistent impact over multiple time horizons as data affects firms’ ability to stimulate customer

engagement which in turn contributes to further data accumulation resulting in self-perpetuating

dynamics. In Section 3, we develop a framework to identify systemically important firms in the

data economy that accounts for indirect linkages and data spillover effects across multiple horizons.
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Other statistics Table 1 provides summary statistics for the key variables in our regression sam-

ple, which includes 1,031 unique firms over the period from 2014Q3 to 2023Q2. Panel A lists all

firm linkages. On average, firm pairs have a similarity score of 0.170 in the data space, with the

90th percentile at 0.46. The similarity in app category and the geographical distribution of business

segments also exhibit relatively large means of 0.157 and 0.300, respectively. Additionally, 0.8%

of firm pairs have customer-supplier linkages, and 6.3% of firms share common analysts. The

correlation in app performance and financial performance varies substantially across firm pairs.

For example, the 10th and 90th percentile of the correlation in log(downloads) are −0.67 and 0.73,

respectively. We observe similar patterns for other performance correlations.

We also report the correlation for stock returns, CAPM-adjusted returns, and DGTW-adjusted

returns. As expected, there is stronger comovement in raw returns (0.248) compared to abnormal

returns based on CAPM (0.034) or DGTW-adjusted returns (0.008). This is because raw returns

capture exposure to common risk factors. All three measures of return comovement exhibit signif-

icant variations across firm pairs, with the 90th percentile at 0.67, 0.47, and 0.44, respectively.

Finally, in Panel B of Table 1, we report the summary statistics for firm-level variables, in-

cluding changes in a firm’s SDK usage and the stock of peer firms’ SDKs, categorized by the

functionality of SDKs. The average firm has 2.023 apps actively using payment SDKs and ex-

periences a change of 0.008 in the number of apps with active payment SDKs. Additionally, the

average firm is connected to peer firms that have 4.391 apps actively using payment SDKs. This set

of measures are motivated by our model in section 3. In terms of firm characteristics, the average

firm in our sample has a long term debt ratio of 26.2%, a tangibility of 20.3%, and a cash-to-asset

ratio of 18.6%. In comparison, the average firm in the non-app sample has a long term debt ratio

of 27.3%, a tangibility of 26.1%, and a cash-to-asset ratio of 10.3%.
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2.5 Performance comovement under data sharing

Data sharing manifests itself in the comovement of firm performances. As previously discussed,

data allows firms to improve performances in various areas from optimizing advertisement to cus-

tomizing product offerings. Two firms that share data with one another through the SDKs are likely

to exhibit comovement in their operational and financial performances as they share a common

“data factor”. The introduction of ATT disrupts data sharing and thereby weakens such perfor-

mance comovement. To test these hypotheses, we follow the international trade literature (e.g.,

Imbs, 2004; Baxter and Kouparitsas, 2005; Di Giovanni and Levchenko, 2010) and estimate the

following regression specification:

CorrPijt = α + β1ρ
data
ij + β2ATT × ρdataij + β3ρ

other
ij + β4ATT × ρotherij + θit + ιjt + εijt (2)

where ij indicates a pair of firms and t time. ρdataij represents data connectedness, and ATT is

an indicator variable that turns one starting from 2021Q2. The correlations we are interested in

– CorrP in performance metric P , where P is app performance, financial performance, or stock

returns – reflect firm pairwise comovement across multiple dimensions. App performance and

financial performance are aggregated at quarterly frequency, while returns monthly.

To ensure that our results are not confounded by other forms of linkages between firms, we

include controls for linkages, denoted as ρotherij , that have been shown in prior literature to im-

pact comovement. Specifically, we control for product market overlap, supply chain relationships,

technological proximity, and common analyst coverage, among others. For each pair of firms ij

and comovement in app and financial performance, we include two observations in the regression

analysis, one before ATT and one after, with t ∈ {pre-ATT, post-ATT}. For return comovement,

we include one observation per 12-month rolling window, defined relative to the ATT. We include
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firm-by-time fixed effects (θit and ιjt) and double cluster standard errors by firm-i and firm-j.

The coefficients of interest are β1 and β2. According to our model, a high degree of data

connectedness (i.e., a high ρdataij ) is associated with more synchronized changes in firm perfor-

mance, suggesting a positive β1. However, we expect β2 to be negative, as privacy regulations like

ATT restrict data flow between firms, disrupting the effectiveness of the data network and thereby

weakening the comovement across firms. To facilitate the interpretation of the coefficients and to

enable comparison across various types of firm linkages, we normalize ρdataij and ρotherij to have a

mean of zero and a standard deviation of one.

The results are reported in Table 2 to Table 4. Starting with app performance comove-

ment, Table 2 confirms that higher data connectedness is associated with a significantly greater

degree of app performance comovement. For example, based on column 1 of Table 2, a one-

standard-deviation increase in data connectedness leads to a 0.025-unit increase in the correlation

of log(downloads) between two firms. Importantly, this relationship disappears after the imple-

mentation of ATT, with the coefficient of ATT × ρdataij at −0.025, offsetting the baseline effect.

Including other types of firm linkages and their interaction terms with ATT has little impact on

the estimation results. We find similar results when focusing on the comovement in log(DAU).

Because the distributions of firms’ pairwise correlations tend to be centered around zero,

directly comparing the coefficient to the average would be less intuitive. Instead, we interpret

the magnitude of these effects by comparing them to other firm linkages. For example, based

on Column 2, the estimated coefficient of 0.024 for ρdataij is 2.6 times larger than that for firms’

horizontal overlap in product markets based on the TNIC, which is 0.009. It is noteworthy that

the coefficients for the interaction terms between ATT and ρotherij are almost never negative or

economically significant, with the exception of ATT×ρproduct horizontalij in column 4. This supports

our interpretation that ATT primarily affects firm performance by limiting data sharing.
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Turning to the comovement in financial performance in Table 3, we find that a one-standard-

deviation increase in data connectedness is associated with a 0.002 increase in the comovement of

earnings growth before ATT. However, this effect is completely reversed after ATT, with the coef-

ficient of ATT ×ρdataij at −0.003. The magnitudes are similar when examining the comovement in

asset turnover. Based on column 2, the effect of data connectedness on performance comovement

is approximately 40% of that of horizontal overlap in product markets, as measured by the TNIC.

The smaller effect of data connectedness on financial performance compared to app performance

is intuitive, as firms may have other non-app business segments.

Finally, we examine stock return comovement. Similar to previous tables, Table 4 reports

the results for raw returns (columns 1-2), abnormal returns based on CAPM (columns 3-4), and

DGTW-adjusted returns (columns 5-6), with and without other types of firm linkages as control

variables. The results are largely consistent across the three types of returns. For instance, based on

the DGTW-adjusted returns in column 6, a one-standard-deviation increase in data connectedness

is associated with a 0.002 increase in return comovement, which is about 12% of that of horizontal

product market overlap. After ATT, this effect of data connectedness on return comovement is

reduced significantly. Notably, none of the alternative linkages experience a sharp drop in their ef-

fects on return comovement after ATT, except for mobile-user overlap in column 4, which captures

firms’ similarity in the app product space and therefore can be correlated with data connectedness.

3 A Network Model of Data Economy

Motivated by the evidence in Section 2, we develop a model of data economy where firms are

interconnected through data sharing. Data plays two critical roles in our model. First, it enables

firms to stimulate customer engagement. Second, it reduces firms’ costs of targeting customers for
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monetization. Therefore, data, by revealing customer’s preferences, allows a firm to interact more

actively with customers and to generate profits through such interaction. Each firm accumulates

data, and through data analytics platforms, shares data with other firms. ATT weakens data sharing.

3.1 The setup

Data dynamics. The economy has N firms. We consider firm i’s problem, i ∈ {1, ..., N}. Let

δi,t denote the firm’s stock of data on its customers. The firm collects data from interaction with

customers (“customer activities”), denoted by yi,t, and δi,t evolves as

dδi,t = θyi,tdt+ µδδi,tdt+ σi,δδi,tdzi,t, (3)

where the last two terms reflect a stochastic growth rate of data that is independent from the current

customer activities, and zi,t is a standard Brownian motion that is independent across firms.

The first term on the right side of equation (3), yi,tdt, captures the idea that data is a by-

product of customer activities, where θ (> 0) represents data generation efficiency (e.g., Berge-

mann and Bonatti, 2019; Farboodi and Veldkamp, 2021). For example, for a retail manufacturer,

the marketing and sales efforts generate interactions with customers, and feedback from customers

is informative of their preferences. Another example is an e-commerce platform collecting data

on consumers by observing their transactions and search activities. Our empirical setting covers

firms across industries. Accordingly, we set up our model to be sufficiently generic to highlight the

commonality among these firms, that is their reliance on data and sharing data with one another.

The parameter, µδ, can be negative in which case data depreciate. The firm uses data to

profile customers. Data stock determines the firm’s information on its customers, including their

product preferences, their willingness to pay for products, and how to attract customers’ atten-
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tion. A higher customer turnover rate and a more volatile customer preferences are likely to be

associated with faster data depreciation (i.e., a lower µδ), as stale data becomes less informative.

Finally, the diffusion term, σi,δdzi,t, captures shocks to firm i’s data stock. A negative shock

may reflect a direct loss of data, for example, due to cyberattack or regulatory and legal actions

against data use.15 In contrast, following a positive shock, the firm gains more information on its

customers, for example, through an increase in product reviews and improved access to technolo-

gies that enable data collection. Our model can be used for analyzing how shocks to one firm spills

over to other firms through the data-sharing network that amplifies the aggregate impact.

Customer engagement. Customer activities, yi,t, contribute to data accumulation. Data in turn

affects the firm’s ability to stimulate customer activities. Intuitively, data contributes positively

to yi,t as it allows the firm to be informed about its customers and thereby can more efficiently

generate customer activities. For example, a retail manufacturer can interact with its customers

and stimulate customer activities only if it knows where the customers shop, post reviews, and

view advertisements in physical locations and on the internet. For an e-commerce company and

other software companies, knowing customers’ preferences and habits is critical for increasing the

amount of time they spend interacting with the product.

However, the firm may not have the expertise in processing and analyzing the raw data.

Therefore, instead of relying on the raw data, it turns to data analytics platforms and transmits its

data through software development kits (SDKs) offered by these platforms. By sharing data, the

firm receives analytical results (signals) in turn, while the platforms combine data from different

firms to provide the analytical results. For firm i, we define Di,t as the analytical output or signals

15Florackis et al. (2022) measure cybersecurity risk from corporate disclosure.
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about its customers that it obtains from the data-sharing SDKs:

Di,t =
N∑
j=1

γijδj,t, (4)

where
∑N

j=1 γij = 1 with γii representing the weight on firm i’s own data and γij representing the

weight on firm j’s data, δj,t, j ̸= i. The weight vector, {γij}Nj=1, is specific to firm i and represents

how information from different sources forms the signal, Di,t, on firm i’s customers.

Next, we specify the technology for stimulating customer activities: yi,t is determined by

yi,t = αDi,t + xi,t, (5)

where α is a parameter that links Di,t, i.e., how informed the firm is about its customers, to cus-

tomer engagement. The firm’s own data, δi,t, contributes to yi,t through the composite signal, Di,t.

The signal obtained from data analytics platforms generates a baseline level of customer

activities, αDi,t, and the firm can increase customer engagement by an extra amount, xi,t, by ad-

justing its product design. When choosing a higher xi,t, the firm makes its product more suitable

for generating customer engagements, for example, by offering free services, rather than monetiza-

tion; in other words, embedded in the choice of product design is a trade-off between monetization

and customer engagement, which we will specify when discussing firm i’s cash-flow generation.

Substituting (4) and (5) into (3), we summarize the data dynamics block of our model in the

following equation:

dδi,t
δi,t

=

(
θα

N∑
j=1

γij
δj,t
δi,t

+ θ
xi,t

δi,t

)
dt+ µδdt+ σi,δdzi,t, (6)

A small firm with a lower δi,t tends to benefit more from other relatively larger firms’ data as the
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ratio δj,t/δi,t tends to be greater in the expected growth rate of δi,t. Therefore, data sharing is an

equalizing force in the economy. ATT reduces θ and weakens this force. Privacy regulations (e.g.,

GDPR) have similar effects. Empirical evidence suggests that such regulations lead to an increase

in market concentration (e.g., Johnson et al., 2023; Jia et al., 2021).

By reducing θ, ATT also weakens firms’ incentive to increase xi,t, i.e., to prioritize customer

engagement and data accumulation over monetization. The intertemporal trade-off a firm faces is

that by increasing xi,t, a firm sacrifices monetization now but through a higher δi,t may be able to

monetize more in the future. Next, we specify how firms’ cash flows depend on the choice of xi,t.

Cash flows. At time t, firm i has ωi,t number of paying customers. Each customer contributes ζ

dollars of profits.16 The number of paying customers is in turn determined by two factors. The first

factor is about the history of customer engagement and the second is the firm’s marketing effort.

As shown in equation (3), δi,t represents firm i’s data stock but also reflects the history of

customer engagement by accumulating customer activities, yi,t, over time. Let κδi,t denote the

number of paying customers generated by such customer capital, i.e., the first component of ωi,t.

The associated profits are given by ζκδi,t. Therefore, δi,t contributes directly to profits.

Here we can already see the interconnectedness from data sharing having an impact on firms’

financial and operational performances and generates comovement. As shown in (3), (4), and (5),

customer engagement, yi,t, increases and δi,t grows faster when firm i is more informed about its

customers (i.e., Di,t is higher), and the composite signal, Di,t, in turn depends on other firms’ δj,t

through the data-sharing network where firm i’s dependence on firm j’s data is given by γij . When

other firms experience negative shocks to δj,t, this translates into lower Di,t in the future that in

turn reduces firm i’s customer engagement, yi,t, and slows down the growth of δi,t.

16In Appendix C.1, we provide the microfoundation based customers’ optimal choices of spending on the firm’s
product and the firm’s optimal pricing decisions.
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Our model setup is motivated by the empirical findings in Section 2 and captures the co-

movement in firms’ financial and operating performances that is driven by data sharing. As shown

in Section 2, ATT reduces comovement from data sharing. In our model, ATT maps to a reduction

of θ, the parameter that governs the amount of data a firm can collect from customer activities. A

lower θ weakens the link between data sharing and comovement in firm performances: other firms’

data affects firm i through Di,t, which affects firm i’s ability to stimulate customer activities, yi,t,

but under a lower θ, the growth of firm i’s δi,t is less affected by variation is yi,t.

We have discussed the role of customer capital (cumulative customer engagement) in gen-

erating profits. Next, we introduce the second factor—marketing efforts—that contributes to the

acquisition of paying customers. Let ωm
i,t denote the number of paying customers attributed to

marketing efforts (hence the total customer base is κδi,t + ωm
i,t). The firm chooses ei,t to maximize

Fi,t = max
ei,t

ζωm
i,t − C(Di,t, xi,t)ei,t, (7)

where Fi,t represents the profits net off marketing costs. ωm
i,t = ωm(ei,t) is increasing and concave

in ei,t, and as previously discussed, profits per unit of customer base is given by ζ .

The unit cost of marketing effort is given by the function C(Di,t, xi,t) that has the following

properties. First, CD < 0 and CDD > 0: the composite signal from data analytics platforms, Di,t,

reduces the effort cost but its marginal benefit is decreasing.17 The concavity in Di,t is in line with

the decreasing return to data in forecasting precision in Farboodi and Veldkamp (2021).18 Second,

Cx > 0 and Cxx > 0: the effort cost is increasing and convex in xi,t. Given a product design

that prioritizes customer engagement over monetization (i.e., a high xi,t), it is difficult for the firm

to induce customers to pay. For example, when a majority of functionalities are offered free, a

17This is consistent with the literature that models intangibles as a factor of production that enables firms to lower
the cost of entering new markets (Argente et al., 2021; Hsieh and Rossi-Hansberg, 2023).

18Data reveals individual customers’ preferences but the potential heterogeneity across customers is finite.
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software company must devote significant efforts to induce customers to pay for the few premium

features. Finally, we assume that the cross-derivative of the cost function is negative (CxD < 0),

that is when the firm is more informed about its customers (i.e., Di,t is higher), the marginal cost

of marketing efforts is less affected by product design choices, xi,t; in other words, the signal on

customers, Di,t, mitigates the tension between generating profits (decreasing xi,t) and stimulating

customer engagement (increasing xi,t). The following lemma summarizes the properties of Fi,t.

Lemma 1 (Data, Product Design, and Profits) The maximized ωm
i,t give under the optimal ei,t

and the associated profits, Fi,t, has the following properties: ωm
i,t and Fi,t are increasing in Di,t,

i.e.,
∂ωm

i,t

∂Di,t
> 0 and ∂Fi,t

∂Di,t
> 0, and decreasing in xi,t, i.e.,

∂ωm
i,t

∂xi,t
< 0 and ∂Fi,t

∂xi,t
< 0. Additionally, the

cross derivative of Fi,t is positive, i.e., ∂2Fi,t

∂xi,t∂Di,t
> 0.

In summary, the firm’ profits are ζκδi,t+Fi,t, where the first component reflects profits from

the classic channel of customer capital (built through past customer engagement that is propor-

tional to δi,t) and the second component, Fi,t, depends on the marketing efforts. The composite

signal Di,t from data analytics platforms contributes to Fi,t by making the marketing efforts more

targeted and efficient.19 Designing the product to downplay monetization, i.e., increasing xi,t, di-

rectly reduces Fi,t by making it more difficult to acquire paying customers.20 The positive cross

derivative, ∂2Fi,t

∂xi,t∂Di,t
> 0, suggests that when firm i is more informed about its customers, the

negative impact of increasing xi,t on profits is mitigated. This property inherits from CxD < 0.

19While we model the role of data as cost reduction, improved profitability may also come from data-enabled price
discrimination (Ichihashi, 2020). The associated harmful impact on customers is beyond the scope of this paper.

20Increasing xi,t to stimulate customer engagement and data accumulation at the expense of monetization is a form
of “active experimentation” in line with Farboodi et al. (2019). In Farboodi et al. (2019), the impact of experimentation
on profits can be positive or negative (rather than always negative as in our model), but the impact is negative at the
optimum: the optimal scale of experimentation (the choice of production scale in their model) is always sufficiently
large such that the marginal impact on current profits is negative. The firm is willing to accept the negative impact on
profits because the marginal value of data acquired through experimentation is positive. In our model, we explicitly
focus on the region where such an explicit trade-off between current profits and data acquisition emerges.
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Figure 5 illustrates the three blocks of our model, data dynamics (which we have focused on

so far), firm decisions (.ie,. the choices of xi,t and marketing efforts), and firm valuation that we

solve in Section 3.2. In our model, the choice is xi,t is akin to an investment decision and involves

an intertemporal trade-off. An increase in xi,t reduces Fi,t but contributes to the accumulation of

data, δi,t, by enhancing customer engagement, yi,t (see equation (3)), and then a higher δi,t in the

future boosts future profits through both ζκδi,t and Fi,t which depends on δi,t via the composite

signal Di,t (see the definition (4)). We may interpret δi,t as the firm’s “productive capital”, and a

more informed firm essentially faces a lower marginal cost of investment under CxD < 0.

Valuation. The firm maximizes the present value of cash flows with a discount rate ρ:

max
{xi,t,ei,t}∞t=0

E
∫ +∞

t=0

e−ρt(ζκδi,t + Fi,t)dt, (8)

Next, we solve the firm’s dynamic choice of xi,t and the value function, highlighting the intercon-

nectedness among firms through data sharing. As Di,t contains both the firm’s own data and other

firms’ data that the analytics platform uses to construct signals on firm i’ customers, the firm’s

dynamic optimization involves both δi,t and all the other firms’ data stock, δj,t, as state variables.

Discussion: The characteristics of data assets. Our model captures the three key features of

data as productive asset. First, the accumulation of data is generated by customer activities and

therefore a by-product of firms’ business operations (e.g., Bergemann and Bonatti, 2019; Farboodi

and Veldkamp, 2021).21 Second, data is non-rival, so sharing data with other firms does not prevent

the firm from using its data or cause the firm to lose data (e.g., Jones and Tonetti, 2020). Third,

data has externality: one firm’s data on its own customers can be informative about another firm’s

21The notion that data is a byproduct of economic activity was well established in the information economics
literature (e.g., Veldkamp, 2005; Ordoñez, 2013; Fajgelbaum et al., 2017).
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customers (e.g., Choi et al., 2019; Ichihashi, 2020; Acemoglu et al., 2022).

The second and third features explain why firms are willing to share data. Firm-level data

externality derives from externality at the individual levels—one person sharing data reveals other

people’s attributes. Choi et al. (2019) and Acemoglu et al. (2022) point out that data externality

leads to excessive data sharing and collection. We will show that firms under-invest in data accu-

mulation (monetize excessively). The difference between the two models lie in the fact that in Choi

et al. (2019) and Acemoglu et al. (2022) , it is the consumers who make decisions on sharing data,

while in our model, firms set the speed of data accumulation via their choices of product design.

The combination of these three features distinguish data from other intangible assets. One

example is R&D, which also generates knowledge that is a non-rival asset and has positive spillover

effects (i.e., the second and third features of data). However, investing in R&D is costly, so the

concern is that firms, while fully internalize the cost of R&D, do not enjoy the full benefits which

include the social benefits through spillover effects, and therefore, under-invest in R&D. In con-

trast, data is generated as by-product of business operations. As shown in equation (3), data accu-

mulates through customer activities. While firms may incur costs to stimulate customer activities

and generate more data, the baseline level of data generation is free, and therefore, there exists a

free positive externality of one firm’s data accumulation on other firms through data sharing.

3.2 Equilibrium

Firm i’s own data stock, δi,t, is a state variable, and, due to the dependence on other firms’ data via

Di,t, the other firms’ δj,t (j ̸= i) are also state variables for firm i. We use F (Di,t, xi,t), defined

in Lemma 1, to denote the maximized profits under the optimal choice of marketing efforts, ei,t,

given any value of xi,t. F (Di,t, xi,t) satisfy the properties in Lemma 1. Next we analyze the

option choice of xi,t through the following Hamilton-Jacobi-Bellman (HJB) equation for the value
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function of firm i, denoted by V i (δi,t, {δj,t}j ̸=i):

ρV i (δi,t, {δj,t}j ̸=i) = max
xi,t

ζκδi,t + F (Di,t, xi,t) + V i
δi,t

[θ(αDi,t + xi,t) + µδδi,t] +
1

2
V i
δi,tδi,t

δ2i,tσ
2
i,δ

+
∑
j ̸=i

[
V i
δj,t

[θ(αDj,t + xj,t) + µj,δδj,t] +
1

2
V i
δj,tδj,t

δ2j,tσ
2
j,δ

]
. (9)

Note that to highlight the intertemporal linkage between the current choice of xi,t and data accu-

mulation, we substitute out yi,t in the drift of δi,t using (5), i.e., yi,t = αDi,t + xi,t. The following

proposition characterizes the optimality condition for xi,t that is a Q-theory of investment in data

accumulation. As previously discussed, the intertemporal trade-off is between the negative impact

on the current profits, given by Fx(Di,t, xi,t), and the positive impact on data accumulation that

depends on the marginal value of data (or data marginal q), Vδi,t .

Proposition 1 (Q-theory of Data Accumulation) The first-order condition for xi,t is given by

−Fx(Di,t, xi,t) = V i
δi,t

θ . (10)

The marginal cost of stimulating customer activities and accelerating data accumulation is equal

to the marginal benefit (marginal q) of data, Vδi,t , multiplied by data generation efficiency, θ.

In our model, data functions as productive capital, analogous to the role of capital in in-

vestment theories (Hayashi, 1982; Abel and Eberly, 1994), with a firm’s product-design choices

mirroring investment decisions, xi,t. Specifically, the marginal q of a firm’s data drives the choice

of xi,t, i.e., whether to prioritize customer engagement and data collection in product design. A

key distinction from the traditional investment models is that in our data economy, firms’ invest-

ment decisions are interconnected through data sharing. Other firms’ data stock, δj,t, enters firm
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i’s optimality condition (10) via its signal on customers, Di,t. Therefore, other firms’ choices of

xj,t, by affecting their data accumulation (the growth of xi,t), affect firm i and its choice of xi,t.

To sharpen the intuition, we specify the functional form of ωm(ei,t) given by ωm(ei,t) =

ln(ei,t) and C(Di,t, xi,t) given by C(Di,t, xi,t) = 1/(ϕ0Di,t − ϕ1xi,t) that satisfy the properties in

Section 3.1 and generate the profit function, F (Di,t, xi,t), through the optimal choice of marketing

effort, ei,t, given by (7).22 Under these functional forms, we obtain closed-form solutions of the

value function, V i (δi,t, {δj,t}j ̸=i), and product design (data investment) decision, xi,t. We define

ρ̂ = ρ− µδ, (11)

where, as defined in (3), µδ is negative, representing the depreciation of data (i.e., stale information

on customer behavior is less informative). Therefore, ρ̂ is essentially the user’s cost of capital in

traditional investment theory, i.e., the sum of discount rate (or required rate of return on capital)

and depreciation rate. The following proposition summarizes the solution of value function.

Proposition 2 (Interconnected Firm Valuation) Let Dt = [D1,t, ..., Di,t, ... DN,t]
⊤ denote the

column vector of all firms’ signals on their customer. Firm i’s value at time t is given by

Vi,t = ηδi,t +
ηβ

ρ̂
e⊤i

[
∞∑
k=0

(
β

ρ̂
Γ

)k
]
Dt + vi,0 = ηδi,t +

ηβ

ρ̂
e⊤i

(
I− β

ρ̂
Γ

)−1

Dt + vi,0. (12)

where vi,0 and η are constant and defined in the appendix and ei is a column vector with i-th

element equal to 1 and other elements equal to zero, under the following parameter condition,

β = θ

(
α +

ϕ0

ϕ1

)
< ρ̂, (13)

22Note that we do not introduce an additional parameter to scale ei,t in the logarithm function because the unit of
marketing effort, ei,t, can be freely interpreted.
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that guarantees the convergence of
∑∞

k=1 β
kΓk as the largest eigenvalue of Γ is one.

Our solutions of firm valuation has several intuitive properties. The composite parameter β

captures the overall growth rate of the data economy. As shown in (3), (4), and (5), θα reflects the

autonomous growth of the data economy, as α translates the composite data for firm i, Di,t, into

customer engagement yi,t, and θ in turn translates yi,t into the growth of firm i’s raw data, δi,t, that

feeds into its own signal on customers, Di,t, and other firms’ signals, Dj,t. Moreover, firms can

accumulate more data by adjusting product design, and the choice of xi,t depends on firm i’s trade-

off between current monetization and data accumulation as shown in (10). When ϕ0 is high, firm

i’s signal on customers, Di,t, significantly lowers the cost of acquiring paying customers, and when

ϕ1 is low, its choice of prioritizing customer engagement over monetization does not significant

raise the cost of acquiring paying customers. Therefore, a high ratio of ϕ0/ϕ1 alleviates the tension

between current profitability and data accumulation via customer engagement, allowing firm i to

grow faster without sacrificing cash-flow generation (i.e., contributing positively to β).

We assume β < ρ̂ = ρ−µδ, so the discount rate, ρ, is greater than the net growth rate of data,

β + µδ, where the data depreciation rate, µδ < 0. This parameter condition is for the convergence

of present value of cash flows, which is a standard in asset pricing. When calibrating the model, we

interpret the discount rate to a combination of interest rate and the intensity rate of an exogenous

Poisson-arriving exit and measure ρ accordingly as the sum of these two components.23

The parameter condition β < ρ̂ also plays the role of ensuring the convergence of the network

spillover effects, captured by
∑∞

k=0

(
β
ρ
Γ
)k

, in the valuation equation (12); otherwise, the infinite

rounds of spillover effects explode. Mathematically, the geometric sequence of network propa-

gation matrices converges when the network attenuation factor, β/ρ̂, is greater than the largest

eigenvalue of the network adjacency matrix, Γ, which is equal to one as Γ is right-stochastic (i.e.,

23Under this interpretation, when a firm exits, we assume a new firm enters and inherits the exiting firm’s δi,t.
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the row sums are equal to one,
∑N

j=1 γij = 1).

As shown in (12), firm i’s value depends positively on all firms’ signals on their customers,

Dt. Such interconnectedness is captured by the data-sharing matrix, Γ. The infinite sum on the

right side accounts for all the direct and indirect network propagation of firms’ signals. The first

term, ΓDt, reflects the direct (first degree) network externality and β/ρ is the network attenuation

factor. The second-degree externality emerges as peer firms’ signals in turn depend on signals from

their connected firms. The network propagation mechanism depends crucially on the attenuation

factor (β/ρ̂ < 1), with distant connections becoming increasingly weak, “discounted” by (β/ρ̂)k.

The strength of network propagation (β) increases when a firm’s signal on its customers is

more effective in generating customer activities and cash flows (i.e., α is higher), when customer

activities generate more data (i.e., θ is higher), and when data is very efficient in lowering market-

ing cost (i.e., ϕ0 is higher ). Overall, the more efficient the data economy is in generating data and

turning data into profits, the more interconnected firms are in their valuation. As β increases and in-

direct connections degrees strengthen, firms’ valuations become more correlated. In our empirical

setting, ATT reduces θ (data collection efficiency), which weakens the interconnectedness.

The model setup reflects the comovement in firms’ operational and financial performances

due to data sharing. After solving firms’ valuation, we compute the stock return, dRi,t = dVi,t/Vi,t.

The next corollary shows that data sharing induces return comovement and the ATT shock, i.e., a

reduction of θ, reduces return comovement in line with our empirical findings in Section 2.

Corollary 1 (Stock Return Comovement) The stock return of firm i at time t, dRi,t = dVi,t/Vi,t,

has a correlation, ρr,i,j = corr(dRi,t, dRj,t), with firm j’s stock return that is increasing in the

dependence of firm i on firm j’s data, γi,j , i.e., ∂ρr,i,j/∂γi,j > 0. Additionally, we have ∂2ρr,i,j
∂θ∂γi,j

> 0.

The decision makers in our model are the firm manager who rely on Di,t, a sufficient statistic

of its own data and other firms’ data, to choose product design, xi,t, and then the marketing efforts,
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ei,t. In reality, financial-market participants may not be as informed as the firm managers do about

Di,t and the embedded network structure of data sharing, so our valuation metric, V i
t , may not map

perfectly to firm valuation in financial markets.24 In our empirical analysis, we show that the return

comovement across firms is in line with our model prediction, which indicates a certain level of

market participants’ awareness of data sharing across firms.25

3.3 Calibration and model-implied comovements

Next, we calibrate our model and show that the model generates the empirical patterns of comove-

ments in firm performances induced by data sharing. The data-sharing connection between firm

i and j, γij (the ij-th element of Γ), is computed following Section 2, and we normalize Γ so

that each row sums up to one. Therefore, the model takes the entire data-sharing network, shown

in Figure 4, as an input. One unit of time is set to one quarter. For each firm on the network, we

compute the volatility of quarterly growth rate of DAU, our proxy for δi,t, to pin down σδ,i, capping

the quarterly volatility at 40%. Firms with volatility less than 40% account for more than 98% of

DAU in our sample. Next, we pin down κ and ζ by regressing firms’ operating cash flow on DAU

to obtain ζκ = 18.26 As a reminder, κ transforms the units of cumulative customer engagement to

paying customer base, and ζ represents profits per customer. We may reinterpret ζ as profits per

unit of customer engagement rather than per customer and thereby set κ = 1 and ζ = 18.

We pin down a subset of parameters with external sources. Discount rate ρ has two compo-

nents, interest rate and a Poisson intensity of firm exit. The former is set to 1%, and the latter set to

24Our valuation exercise takes the perspective of an investor with perfect information and emphasize return comove-
ment due to firms’ interconnected fundamentals. Veldkamp (2006) shows that under imperfect information and facing
information acquisition costs, market participants’ information choices also generate comovements in asset prices.

25Another deviation from the reality is that in our model, the discount rate is constant, while in reality, investors are
likely to apply a stochastic discount factor to compute the present value of firms’ cash flows.

26Specifically, we regress total sales on DAU controlling for firm characteristics (total assets, cash, PP&E, and
long-term debt) and industry-year fixed effects.
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2% per quarter, consistent with the 8% annual exit rate in Jones and Kim (2018). Data depreciation

rate is set to 7.5% per quarter following Veldkamp and Chung (2024), i.e., µ = −0.075.

The rest of parameters we calibrate to replicate empirical findings in Section 2. Note that the

following parameters, α, θ, ϕ0, and ϕ1, form a composite parameter β. Model simulation requires

β as a key input but does not require the values of these four parameters separately. Therefore, we

directly set β to 0.08. Moreover, we set ξ, the percentage reduction of θ, to 0.7, meaning that data

collection from customer activities becomes 70% less efficient (see the law of motion of δi,t given

by (3). Under β = 0.08 and ξ = 0.7, we simulate our model with the number of firms equal to that

of our sample and firms interconnected via Γ as previously discussed. The simulation is done one

hundred times, and each simulation is run for 20 quarters which is our sample period in Section 2.

With the simulated data, we run the regressions in Column (4) of Table 2, Column (4) of

Table 3 and Column (4) of Table 4 and report the median estimates in the top panel of Table 5

alongside with the estimates from Table 2, 3 and 4. These regressions target the impact of data

connectedness on comovement in firms’ operational, financial, and stock-market performances re-

spectively. Note that there are six regression coefficients but only two parameters, β and ξ, that we

can choose to match these coefficients. The comparison in Table 5 shows that our model captures

the comovements in firms’ operational and stock-market performances reasonably well. In par-

ticular, the model successfully generates a strong positive association between firms’ performance

comovements and their data-sharing linkages, and the ATT shock weakens this mechanism.27

27To estimate the DiD coefficients for the ATT shock, we introduce an unexpected change to θ in simulation. The
ATT shock causes β to decline by 70%. As shown in (13) a 70% reduction of θ translates into a 70% decline of β.
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4 Product Design Dynamics

In Section 3, we develop a theoretical framework to capture the salient features of data economy

that emerge from data sharing as documented in Section 2. Our model highlights that when design-

ing products, firms face an intertemporal trade-off between monetization and data accumulation.

The optimal product-design decision is characterized by a q-theory of data investment in Proposi-

tion 1. Next, we show that under data sharing, firms rationally mimic the product-design choices

of one another. Such herding behavior in investment decisions is unique to data economy.

4.1 Intertemporal trade-off: monetization and data accumulation

From Proposition 1 and 2, we solve firm i’s value function and optimal xi,t. Next, we characterize

several key properties of optimal product design decision, xi,t. In Section 5.2, we discuss how to

apply firms’ value functions to identify systemically important firms in the data economy.

The optimality condition for xi,t in Proposition 1 and the value function in Proposition 2

demonstrate that other firms’ data, δj,t, enters into firm i’s choice of xi,t via the composite signal

from the data-analytics platforms, Di,t =
∑N

j=1 δj,t. Next, we show that xi,t is increasing in Di,t,

and importantly, herding behavior in firms’ product-design decisions emerges due to data sharing.

Proposition 3 (Optimal Product Design) Firm i prioritizes customer engagement and data ac-

cumulation over monetization (increases xi,t) when Di,t is higher. The expected change of xi,t,

Et[dxi,t], is increasing in xj,t, j ̸= i, and the sensitivity is increasing in θ, i.e., ∂Et[dxi,t]

∂xj,t∂θ
> 0.

In Lemma 1, we show that the cross-derivative of profit function is positive ( ∂2Fi,t

∂xi,t∂Di,t
> 0),

that is when other firms accumulate more data contributing to firm i’s signal on its customers, Di,t,

firm i’s marginal cost of prioritizing data accumulation over monetization decreases. Intuitively,
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when firm i is more informed about its customers, marketing efforts become more effective in gen-

erating revenues in spite of a product design that downplays monetization. Therefore, other firms

accumulating data reduces the marginal cost of accumulating data (and delaying monetization) for

firm i. The strength of such spillover effect is given by γij , the coefficient of firm j’s data in Di,t.

Consider an increase in other firms’ current choice of xj,t, which leads to an increase in their

data stock, δj,t, and an increase in firm i’s signal on its customers, Di,t. Then from t to t + dt,

firm i’s choice of xi,t increases, resulting in a “herding” or cross-firm momentum in prioritizing

data accumulation over monetization in product design. Therefore, a positive data investment

externality exists, which is sharp contrast with the investment dynamics of traditional firms whose

investment is likely to crowd out other firms’ investment (for example, by raising the prices of

investment inputs and financing costs). In the next section, we provide empirical evidence on the

cross-firm momentum in product design choices.

The product-design dynamics also suggests that waves of active data collection or moneti-

zation emerge in the data economy. Shocks to one firm’s data stock are propagated to other firms

through data sharing, and as a result, other firms marginal cost of data investment are affected.

Positive data shocks to one firm leads to more data investments by other firms, so all firms in the

economy tend to prioritize customer engage and data collection over monetization. In contrast,

when negative shocks to one firms’ data stock are propagated through the data-sharing network,

other firms respond by prioritizing monetization in their product design at the expense of customer

engagement, resulting in a wave of significant under-investment in data accumulation.

Overall, due to the positive spillover effect (one firm’s data accumulation reduces other firms’

cost of data investment), our model features under-investment in data accumulation, that is firms’

choices of xi,t are below those deemed optimal by the planner that maximizes all firms’ value.28

28Note that when computing the planner’s solution, we do not consider other stake holders’ welfare, including those
of the customers and employees. The planner’s objective is to maximize the sum of all firms’ value.
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Under-investment intensifies during a monetization wave that is often triggered by negative shocks

(e.g., cyberattack) to one or several firms’ data stock. In the last section, we examine cyberattacks

as data shocks and characterize how shocks are propagated through data-sharing network.

Proposition 3 shows that by reducing θ, ATT weakens the cross-firm momentum in product-

design decisions, i.e., ∂Et[dxi,t]

∂xj,t∂θ
> 0. This is an unintended consequence of ATT that has not been

studied before. Beyond the impact on herding in product design, reducing θ directly reduces firms’

incentive to acquire data (i.e., decreases data marginal q) and encourages firms to prioritize mone-

tization, in line with the findings in Kesler (2023). Intuitively, ATT dampens the self-perpetuating

dynamics of data accumulation (see the data dynamics block of our model in Figure 5).29

Proposition 4 (ATT and Product Design) Reducing θ reduces the data marginal q, ∂Vi,t/∂δi,t,

and thus causes all firms to prioritize monetization over customer engagement (i.e., xi,t decreases).

4.2 Evidence on interconnected product design choices

We test the unique prediction of our model on product-design dynamics in the data economy—the

herding behavior in firms’ product-design decisions in Proposition 3. Moreover, we show that in

line with Proposition 4, ATT has the unintended consequence of weakening such herding behavior.

To examine whether firms’ product-design decisions (prioritizing monetization vs. customer

engagement) and how they are influenced by their peers, we design the following empirical strat-

egy. First, we classify payment SDKs as directly related to monetization, while SDKs facilitating

data security and customer support are related to customer engagement. Examples of those SDKs

are provided in Appendix A. For each of the following SDK categories–payment, security, and

customer support–we calculate: 1) the number of unique SDKs used by a firm, denoted as Xi,t, 2)

the change in the number of unique SDKs used by a firm, denoted as ∆Xi,t, and 3) the weighted
29Specifically, the link from yi,t, customer activities, to future δi,t is weakened.
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sum of the number of unique SDKs used by peer firms that share data with the focal firm, where

the weight is the pairwise data connectedness, specified as follows

X−i,t−1 =
∑
j,j ̸=i

ρdata
i,j Xj,t−1.

Importantly, the third measure X−i,t−1 captures peer firms’ strategies.

We then estimate the following equation separately for different SDK categories, closely

following the solution for a firm’s optimal product-design strategy in Section 4.1:

∆Xi,t = α + β1X−i,t−1 + β2ATT ×X−i,t−1 + β3Xi,t−1 +Citβ4 + ιkt + εi,t, (14)

where Cit includes firm-level controls such as firm size (log of assets), long-term debt to assets,

and tangible assets to total assets. We also include industry-year fixed effects (ιkt). Standard errors

are clustered at the firm level. Note that the coefficient of β1 corresponds to the model prediction

on herding behavior in firms’ product-design decisions in Proposition 3 and the coefficient β2

corresponds to the impact of ATT in Proposition 4.

The estimation results are presented in Table 6, with Panel A focusing on monetization SDKs

and Panel B on SDKs related to customer engagement. Consistent with the model’s prediction, the

changes in firms’ product design positively load on their peers’ product-design choices from the

previous period across different functionalities of the SDKs. Additionally, the coefficient on the

interaction term, β2 for ATT × X−i,t−1, is negative and of a similar magnitude to the pre-ATT

comovement captured by β1. This indicates that the herding behavior in firms’ product-design

decisions emerges from data sharing, and ATT significantly weakens this channel.

Using the simulated data from Section 3.3, we run the same regressions, and in Table 7, we

compare the model-implied regression coefficients with those estimated from data. The model-
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generated cross-firm herding in product-design choices is in line with that observed in data. More-

over, the model also generates a weakened herding behavior after the ATT shock in line with our

empirical findings. Therefore, even though the product-design dynamics are not targeted when we

calibrate the model, the model generates patterns that closely resemble those observed in the data.

5 Systemically Important Firms in Data Economy

The network of data sharing generates interdependence across firms and propagates shocks to one

firm to the rest of the data economy. In this section, we first present reduced-form evidence on

how data sharing facilitates the propagation of shocks using cyberattacks as our empirical setting.

Our findings demonstrate the importance of recognizing the network structure of data sharing for

tracing the impact of cyberattack on the whole data economy. To comprehensively characterize the

systemic risk in data economy, we use model to develop metrics of firms’ systemic importance.

Our model allows us to identify firms whose data shocks have the most significant impact on the

whole data economy due to their critical positions in the data-sharing network. Our metric of

systemic importance incorporates firm size heterogeneity, the topology of data-sharing network,

and the spillover effects from both direct and indirect connections and over multiple time horizons.

5.1 Cyberattack ripple effects on data-sharing network

We identify major cyberattck events using data from Advisen. This dataset covers more than

90,000 cyber events between 2000 and 2023 collected from publicly verifiable sources, including

government websites, keyword-based searches, and official court and litigation sources.30 We de-

fine major cyber events as those involving the exposure of more than 10 million records, identifying

30More information on Advisen’s data sources can be found on their website.
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a total of 22 such events. A list of these events and their summaries can be found in Table B.1.

For each firm k involved in a cyber event, we define a peer firm i’s exposure to the event as:

Exposureik =
∑

P ρdata,P
ik DAUP

k∑
P

∑
j ρ

data,P
ij DAUP

j

where j represents a firm connected to firm i via data sharing, and P represents platforms, taking

values from {iOS, Android}, and ρdata,P
ik is data connectedness between firm i and firm k, as defined

in equation (1). A higher value of Exposureik implies that firm k’s data is important relative to all

other firms connected to firm i. A firm j is considered to be highly exposed to firm k’s cyber event

if Exposureik ⩾ 0.01, corresponding to the 75th percentile of the exposure distribution. Firms with

Exposureik < 0.01 are considered control firms. We assign an indicator variable, high exposureik,

which takes the value of 1 for highly exposed firms and 0 otherwise.

We estimate the following regression equation on the 22 major cyber events using a stacked

difference-in-differences approach:

Yikt = α+β1cyber eventk×high exposureik+β2cyber eventk×ρotherik +Xitβ3+θik+ ιkt+εikt,

(15)

where k indexes events, i indexes firms, and t indexes the quarter relative to each event. For

each event, we use an 16-month window, with 8 months before and 8 months after the event.

We consider two outcomes for Yit: total downloads and DAU (daily active users) for a firm in a

given quarter, both in natural logarithm. cyber eventk is an indicator variable that takes the value

of 1 after the cyber event occurs. ρotherik includes non-data firm linkages between i and k. In all

specifications, we include the following firm-level controls, Xit: firm size (log of assets), long-

term debt to assets, and tangible assets to total assets. Additionally, we control for firm×event

fixed effects θik and event-specific relative quarter fixed effects ιkt. The firm×event fixed effects
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ensures that the identification of our coefficient of interest β1 relies on comparing the treated and

control firms within each event. Standard errors are double-clustered by event and firm.

We report the estimation results in Table 8, with the first two columns presenting the results

on downloads and the last two columns on DAU. In all columns, β1 is negative and statistically

significant at the 1% level. The magnitude of the cross-firm spillover effect of major cyber events is

economically large. Specifically, relative to the control firms, the highly exposed firms experience a

8.3% drop in quarterly downloads (column 1) and a 9.6% drop in DAU (column 3). Controlling for

the interaction of cyber eventk with other firm linkages, these point estimates drop slightly to 6.8%

and 7.7%, as reported in column 2 and column 4, respectively. Additionally, when estimating the

dynamic version of Equation 15, we show in Figure 6 that our results are not driven by pre-trends

between control and treated firms. There are no discernible pre-event trends, and the treatment

effect begins to emerge immediately after the cyber event occurs, continuing through the fourth

quarter post-event. Finally, it stabilizes after five quarters with a slight upward reversal.

Next, we present an event study on peer firms’ stock performance surrounding the cyber

events. The results are shown in Figure 7, where Panel A and Panel B use the incident dates

and notice dates, respectively, as the event dates. Both panels illustrate the cumulative abnormal

returns for peer stocks with high exposure to the event, using CAPM as the benchmark model.

Major cyber events and highly exposed peer firms are defined the same way as before. As shown in

these figures, firms connected to the focal firms experience a 3-4% decline in cumulative abnormal

returns in the month following either the incident or notice date. Using other benchmark models,

such as the Fama-French three factor model and DGTW, yields qualitatively similar results.

These findings provide the first evidence of how negative shocks to firms spill over to their

peers through the data-sharing network, hindering peers’ operational performance and valuation.
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5.2 Valuation and systemic importance

Our findings so far reveal the spillover of shocks from focal firms to those that are directly con-

nected through data sharing. The empirical strategy omits two critical aspects of network external-

ity, the higher-order externalities and persistent impact across different time horizons. The impact

on peer firms is likely to transmit further to their data-sharing counterparts, resulting in second-

degree network externalities. Additionally, as shown in Figure 5, data generates self-reinforcing

growth so that any shock would have a persistent effect as it not only affects the current stock of

data but also shifts the trajectory of data growth in the future. Therefore, it is also important to

account the spillover of shocks at multiple time horizons. In the following, we develop a system-

atic framework based on our model in Section 3. Moreover, instead of tracing the propagation of

realized shocks such as cyberattacks as we have done in the previous subsection, we calibrate the

size of data shock in our model (i.e., σδ,i in the law of motion of δi,t) for each firm in our sample

and assign metrics of systemic importance based on such ex ante measure of riskiness.

Valuation under data sharing. The valuation of a firm is the present value of cash flows that

reflect the productivity of the firm’s own data and the dependence on other firms’ data across

multiple time horizons. Any variation in a peer firm j’s data stock, δj,t, through the composite

signal, Di,t =
∑N

j=1 γijδj,t, affects firm i’s product-design decision, xi,t, customer engagement

(i.e., yi,t in (5)), and the growth of firm i’s data, δi,t, given by (3). The impact can be traced

through the diagram in Figure 5. Importantly, the impact is persistent. Given the geometric growth

path of data stock, any variation in its current value, δi,t, shifts the whole trajectory. Moreover, as

the variation in δj,t transmits through firm i to other firms, it generates a second-degree network

spillover effects. In the following, we demonstrate that our valuation metrics naturally encompass

the impact of data-stock variation at one firm on all other firms across multiple time horizons and
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network spillover effects of first, second, and all the higher-order degrees.

The next result is at the core of our analysis. We show that in the absence of data sharing, the

valuation formula is reduced to a standard Gorton growth formula. Under data sharing, the firm-

level growth is replaced with “community growth” of the whole data economy into the valuation

framework, and the topology of data sharing, given by the network adjacency matrix, Γ, plays a

crucial role in determining the overall community growth and its contribution to firm i’s valuation.

Proposition 5 (Network-Augmented Gordon Growth Formula) Let δ̄t denote the column vec-

tor of all firms’ data stock, δ̄t = [δ1,t, ..., δN,t]
⊤. Firm i’s value can be written as

Vi,t = ζκe⊤i (ρ̂I− βΓ)−1 δ̄t + vi,0. (16)

where vi,0 is constant and ei is a column vector with i-th element equal to 1 and other elements

equal to zero. In the absence of data sharing, i.e., Γ = I, firm i’s value is given by

Vi,t =

(
ζκ

ρ̂− β

)
δi,t + vi,0. (17)

The valuation formula (16) decomposes firm value into two components. The first term

represents the present value of cash flows generated through the customer capital channel (see

Figure 5). As a reminder, ζ is the cash flow per unit of customer capital, and since δi,t represents

the cumulative customer engagement up to time t, we define customer capital as κδi,t. As shown

in (3), the dynamics of δi,t depends on other firms data (recorded in the vector δ̄t) that contributes

to firm i’s composite signal on its customers, Di,t =
∑N

j=1 γijδj,t, because Di,t is important for

stimulating customer engagement and data is a by-product of customer engagement (see (5)).

The other channel of cash flow generation is through firm i’s active marketing efforts, and

the value of this component is absorbed in the constant vi,0. Given that the marketing cost depends
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on Di,t, this component of cash flows, i.e., F (Di,t, xi,t) given by (7), may depend on Di,t (and on

δ̄t) instead of being a constant. However, the cost of marketing efforts also depends negatively on

xi,t, the product-design decision. When an increase in Di,t brings down the marketing cost, firm i

increases xi,t such that the marketing cost remains the same level. In other words, an increase of

Di,t transmits directly to xi,t, resulting in faster data accumulation, rather than lowers the marketing

cost and raises current cash flows. Therefore, F (Di,t, xi,t) stays constant. Data accumulation

through the response of xi,t to Di,t is reflected in β, the composite data growth rate defined in (13).

When firm i’s signal on its customers does not depend on other firms’ data (i.e., Di,t = δi,t

under Γ = I), (ρ̂I− βΓ)−1 in (16) is replaced by 1/(ρ̂ − β) in (17). The coefficient of δi,t in

(17), ζκ/(ρ̂− β), is the present value of cash flows generated per unit of δi,t through the customer

capital channel (see Figure 5) under Γ = I. Therefore, in the absence of data sharing, firm i’s

valuation is given by the standard Gordon growth formula (17) with δi,t—the cumulative customer

engagement—playing the role of productive capital (or customer capital) that grows over time and

vi,0 capturing the additional cash-flow impact from active marketing efforts.

Our contribution is to demonstrate that data sharing generates a network-augmented Gordon

Growth formula for cash flow valuation. Given all firms’ data stocks at time t, δ̄t = [δ1,t, ..., δN,t]
⊤,

the linear operator, (ρ̂I− βΓ)−1, generates the expected growth paths for all firms and discounts

the growth paths with ρ̂. The rotated data vector (ρ̂I− βΓ)−1 δ̄t represents not only the persistent

impact of data on firms’ cash flows at multiple time horizons but also the spillover of data from

one firm to another. The i-the element of this vector belongs to firm i.

Our valuation framework is forward-looking and properly accounts for network externalities.

This stands in contrast to the traditional cost-based method of valuing intangible capital. Broadly

speaking, intangible capital exhibits positive network externalities through knowledge spillover

across firms and the scope of usage across firms and industries. Data is one salient example. We
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provide a direct measure of spillover effects, i.e., the data-sharing network Γ, and incorporate it

into a valuation framework to evaluate its economic significance.

Valuation centrality. Next, we develop a method to identify systemically important firms in the

data economy. Aggregating the valuation of all firms, we obtain

V̄t = ζκ1⊤ (ρ̂I− βΓ)−1 δ̄t +
∑
i

vi,0, (18)

which connects the column vector of all firms’ data stock, δ̄t, to the value of aggregate cash flows

across all time horizons. Any variation in a particular firm’s data stock is transmitted to cash flows

across all firms at all horizons through the network-augmented growth matrix,

1⊤ (ρ̂I− βΓ)−1 =
1

ρ̂
1⊤

∞∑
k=0

(
β

ρ̂
Γ

)k

. (19)

Each firm’s contribution to the aggregate value of cash flows is given by

ζκ{1⊤ (ρ̂I− βΓ)−1}.iδi,t + vi,0, (20)

where {·}.i picks the i-th column of a matrix. {1⊤ (ρ̂I− βΓ)−1}.i encodes all the routes of data

spillover from firm i to other firms and summarizes such impact across all time horizons. Our

metric of valuation contribution traces the flow of firm i’s data through the whole economy, thus

providing a comprehensive account of data deployment across different firms. Our focus on the

scope of data usage across firms echoes Crouzet et al. (2024) who emphasize the scope of intangi-

ble capital usage across different divisions within firms and by competing imitators.

Following Ballester et al. (2006) and Denbee et al. (2021), we define valuation key player as
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the firm who makes the largest contribution to the aggregate value of cash flows, i.e.,

VKP = argmax
i

ζκ{1⊤ (ρ̂I− βΓ)−1}.iδi,t + vi,0. (21)

In Panel B of Figure 8, we report the valuation contribution from the top 50 firms ranked by their

DAU and compare it against firms’ DAU in Panel A. In both panels, we rank firms by DAU so the

bar chart in Panel A exhibits a monotonically decreasing pattern, and we normalize firms’ values

by that of the first firm. Comparing the two panels reveals that firms’ valuation contribution,

which takes into account the data spillover effects of all degrees of network propagation and across

all time horizons, can differ significantly from firm size. Therefore, to understand the economic

implications of data sharing, it is critical to trace the network of data flows.

A firm’s contribution to the value of aggregate cash flows given by (20) can also be decom-

posed into rounds of network propagation:

ζκ

ρ̂

{
1⊤

∞∑
k=0

(
β

ρ̂

)k

Γk

}
.i

δi,t + vi,0. (22)

At time t, the stock of firm i’s raw data is δi,t. By contributing to its own and other firms’ signals,

variation of δi,t permeates across the data-sharing network generating direct (k = 1) and indirect

(k > 1) spillover effects and, through the self-reinforcing data dynamics as shown in Figure 5,

such impact persists into the future. In Figure 9, we truncate k at different values, denoted by K,

starting from K = 0, and report firms’ valuation contribution. At K = 0, firm i’s contribution to

the value of aggregate cash flows is given by ζκ
ρ̂
δi,t, which shuts down the propagation of data to

other firms and over time. In Panel B and C, we consider K = 3 and K = ∞, respectively. As K

increases, valuation contribution converges to the equilibrium value.

Note that a firm’s contribution to the value of aggregate cash flows differs from its own
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valuation. In Figure 10, we report the ratio of valuation contribution to firm’s own valuation:

ζκ{1⊤ (ρ̂I− βΓ)−1}.iδi,t + vi,0

ζκe⊤i (ρ̂I− βΓ)−1 δ̄t + vi,0
. (23)

In Panel A, we solve the model and compute the ratios under the pre-ATT value of β, and in Panel

B, we compute the post-ATT ratios. In both panels, firms are ranked by DAU. Pre-ATT, contri-

bution from Meta (formerly Facebook) to the value of aggregate cash flows in the data economy

is more than 2.5x Meta’s own valuation, and Alphabet (formerly Google) has an even higher ra-

tio above 5.0x. After the introduction of ATT that curtails the cross-firm data flows, Meta’s and

Alphabet’s ratios declined to 1.2x and 2.4x respectively.

Risk centrality. The aggregate value of cash flows has the following law of motion

dV̄t = ζκ1⊤ (ρ̂I− βΓ)−1 dδ̄t. (24)

The variation in firms’ data stock drives that of aggregate cash-flow value. Let Σδ,t denote the

time-t conditional covariance matrix of dδ̄t which is diagonal with ii-th element equal to δ2i,tσi,δ

(see the law of motion of δi,t given by (3)). We compute the conditional variance of dV̄t:

Vart[dV̄t]/dt = ζ2κ21⊤ (ρ̂I− βΓ)−1Σδ,t

(
ρ̂I− βΓ⊤)−1

1. (25)

Following Denbee et al. (2021), we define the network impulse response functions (NIRFs)

that decompose the conditional variance of Vart[dV̄t]:

Vart[dV̄t]/dt = NIRF⊤
t NIRFt, (26)
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where the i-th element of NIRFt is given by

NIRFi,t = ζκ{1⊤ (ρ̂I− βΓ)−1}.iσi,δδi,t. (27)

Firm i’s NIRF is precisely its contribution to the conditional variance of aggregate cash-flow value.

A firm’s NIRF records the impact of its shock on the present value of aggregate cash flows

in the economy. It depends on the composite growth rate of data β, the user’ cost of capital for

data (i.e., the effective discount rate) ρ̂, the topology of entire data-sharing network encoded in the

network adjacency matrix Γ, the size of firm i’s data shock, σi,σ, and the size of firm i’s current

stock of data, δi,t. It is composite measure of firm i’s systemic importance for the fluctuation of

cash-flow value in the economy. We define risk key player as the firm with highest NIRF:

RKP = argmax
i

NIRFi. (28)

In Panel C of Figure 8, we report the risk contribution (NIRF) from the top 50 firms ranked

by their DAU and compare it against firms’ DAU in Panel A. In both panels, we rank firms by

DAU. Our empirical exercise in Section 5.1 considers one type of shocks and only the first-degree

network externality, which NIRF traces the shock propagation through higher-order spillover ef-

fects and summarizes (ρ̂-discounted) shock impact over different time horizons. This exercise

reveals new insights into the relative importance of different data-driven firms from a valuation

perspective. For example, despite Meta having 3.6 times the DAU of Alphabet, Alphabet is more

connected in the data-sharing network, and its DAU is more volatile. Consequently, Alphabet is

more systemically important from the perspective of aggregate cash-flow risk in the data economy.
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In Figure 11, we truncate network propagation at the K-th round, computing

NIRFK
i,t =

ζκ

ρ̂

{
1⊤

K∑
k=0

(
β

ρ̂

)k

Γk

}
.i

σi,δδi,t. (29)

Across the three panels, firms are ranked by NIRF0
i,t. From K = 0 to 3 and then ∞, this measure

gradually incorporates shock impact at longer time horizons and the higher-order spillover effects

of firm i on other firms. To further illustrate the powerful shock propagation mechanism generated

by data sharing, we consider an experiment where all firms draw independent standard normal

shocks, denoted by ε̄, and we trace the rounds of shock propagation by computing, for firm i,

νK
i,t =

{
1⊤

K∑
k=0

(
β

ρ̂

)k

Γk

}
.i

ε̄. (30)

We run the experiment 10,000 times for K = 1, 9, and ∞. For each value of K, we plot the

histogram of the sum of all firms’ νK
i,t to arrive at the aggregate impact. As shown in Figure 12,

increasing the rounds of network propagation stretches the distribution wider, suggesting that the

network structure of data economy amplifies fluctuation in the value of aggregate cash flows.

6 Conclusion

Data’s non-rival nature and externalities make it a uniquely powerful asset in the modern economy.

One firm’s data can be used simultaneously by other firms even when firms do not perfectly over-

lap in customer base. This paper uncovers a network of inter-firm data flows, facilitated by data

analytics platforms. Firms collect customer data and share it with these platforms, which aggre-

gate data to generate customer profiling signals that enhance firms’ operational efficiency, improve

customer engagement, and support further data collection, creating a self-reinforcing cycle.
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Our findings reveal that data sharing drives strong comovements in operational, financial,

and stock-market performances among data-connected firms, effects that extend beyond traditional

measures of overlap or common exposures. Furthermore, data sharing induces strategic comple-

mentarity in firms’ product-design choices, amplifying cycles of firms’ product-design choices.

To explain these patterns, we develop a dynamic network model of the data economy that

captures the interconnected dynamics of data collection, sharing, and utilization, providing insights

into the economic implications of policy interventions (e.g., ATT). Additionally, the framework

identifies systemically important firms whose critical positions in the data-sharing network dispro-

portionately influence the broader data economy. These findings highlight the need to consider the

network structure of data economy when evaluating the role of data as productive assets in firm

performance, corporate decision making, industry dynamics, and the economic growth.
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FIGURE 1: Firms in the Data Network vs. Compustat Universe – Industry

Panel A. Share of data-reliant firms within industry

Panel B. Share of data-reliant/Compustat firms across industries

NOTE.—Figure 1 compares the industry distribtion of firms in the data network (“App Sample”) with those in the
broader Compustat universe (“Full Sample”). Panel A shows the proportion of data-reliant firms within each industry
Fama-French 48 industry classification and Panel B shows the distribution of firms across industries.
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FIGURE 2: Firms in the Data Network vs. Compustat Universe – Size and Sales

Panel A. Size

Panel B. Sales/Assets

NOTE.—Figure 2 compares firms in the data network (“App Sample”) with those in the broader Compustat universe
(“Full Sample”). We focus on firm size, proxied by log(assets) (Panel A) and the sales/assets ratio (Panel B).
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FIGURE 3: Amazon’s Data Peers
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NOTE.— Figure 3 illustrates Amazon and the 10 firms most connected to it in the data space. Firms are depicted
as blue circles, with the circle size corresponding to the firm’s Monthly Active Users (MAU). Data-related SDKs are
shown as red or yellow rectangles. Lines connecting firms to SDKs indicate that the firm is utilizing the SDK, with
the thickness of the line representing the relative importance of the SDK to the firm, measured by the proportion of
the firm’s MAU linked to the SDK.
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FIGURE 4: The Data-Sharing Network

NOTE.—Figure 4 visualizes the network of firms connected in the data space using the Fruchterman-Reingold Algo-
rithm and average data connectedness in 2020. Each node represents a firm, with the firm’s ticker displayed, and the
size of the node corresponds to the firm’s size, proxied by the square root of total MAU in 2020. Firms connected by
edges are those with positive data connectedness. For readability, we only include firm pairs with data connectedness
greater than 0.7, which includes 640 unique firms and around 6.2% of all firm pairs. We label the firms that have more
than 4.7 million MAU in an average quarter in 2020. Firms situated at the center typically have more highly-connected
peers. Firms in different clusters, as identified by the Fruchterman-Reingold Algorithm, are distinguished by different
colors. We identify and label the most popular SDK within each cluster of firms ex post.
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FIGURE 5: A Summary of Model Structure
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FIGURE 6: Cross-firm Spillover of Major Cyber Events on App Performance

Panel A. ln(downloads)

Panel B. ln(DAU)

NOTE.— Figure 6 shows the cross-firm spillover effects of major cyber events on app performance. Major cyber
events are defined as those that result in the exposure of over 10 million records. The dynamic DiD coefficients are
obtained from estimating the dynamic version of Equation (15). For each firm k involved in a major cyber event, we
define a peer firm i’s exposure to the event as:

Exposureik =

∑
P ρdata,P

ik DAUP
k∑

P

∑
j ρ

data,P
ij DAUP

j

where j represents any other firm connected to firm i within the data space, and P represents platforms, taking val-
ues from {iOS, Android}. A firm k is considered an important peer if Exposureik > 0.01, corresponding to the 75th
percentile of the exposure distribution. Firms with Exposureik <= 0.01 are considered as control firms. We include
the following firm-level controls: firm size (log of assets), long-term debt to assets, and tangible assets to total assets.
Additionally, we control for firm×event fixed effects and event-specific relative quarter fixed effects. Standard errors
are double clustered by event and firm.
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FIGURE 7: Event Study of Cross-firm Spillover of Major Cyber Incidents

Panel A. Event Date: Incident Date

Panel B. Event Date: Notice Date

NOTE.— Figure 7 presents event studies examining the cross-firm spillover effects of major cyber events. Panels A
and B use the incident dates and notice dates, respectively, as the event dates. Both subfigures display the cumulative
abnormal returns for peer stocks with high exposure to the event, using CAPM as the benchmark model. Major cyber
events are defined as those that result in the exposure of over 10 million records. For each firm k involved in a major
cyber event, we define a peer firm i’s exposure to the event as:

Exposureik =

∑
P ρdata,P

ik DAUP
k∑

P

∑
j ρ

data,P
ij DAUP

j

where j represents any other firm connected to firm i within the data space, and P represents platforms, taking val-
ues from {iOS, Android}. A firm k is considered an important peer if Exposureik > 0.01, corresponding to the 75th
percentile of the exposure distribution. 70



FIGURE 8: Key Firms in the Network

A. Top 50 DAU firms
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B. Valuation Contribution
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C. Risk Contribution
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NOTE.—Figure 8 Panel A displays the top 50 firms ranked by their average daily active users (DAU) within the sam-
ple. The y-axis (in logs scale) represents the average DAU, with values scaled so that the maximum is normalized
to 1. Firms are ordered by their average DAU from left to right. Panel B shows each firm’s contribution to the total

valuation of the network. Each bar corresponds to the element vi,0 + ζκ
ρ̂

{
1⊤
(
I− β

ρ̂Γ
)−1

}
.i

δi, representing each

firm’s impact on valuation. Panel C illustrates each firm’s contribution to the total variance of the network. Each bar

corresponds to the element
{
1⊤
(
I− β

ρ̂Γ
)−1

}
.i

σiδi, representing each firm’s impact on variance.
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FIGURE 9: Valuation Contribution under Different Degrees of Network Propagation

A. Valuation Contribution, K = 0
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B. Valuation Contribution, K = 3
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C. Valuation Contribution, K = ∞
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NOTE.—Figure 9 illustrates the distribution of valuation contribution at different levels of network propagation. The
y-axis (in logs scale) represents each firm’s contribution to the total valuation of the network, with values scaled so
that the maximum is normalized to 1. We display the top 50 firms ranked by their average daily active users (DAU)
within the sample. Panel A shows the distribution when K = 0 (no network propagation). Panel B represents the case
with K = 3 (shocks propagate three times through the network). Panel C corresponds to the case with K = ∞, when
all network effects are accounted for.
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FIGURE 10: Firm Valuation vs. Firm Contribution to Aggregate Valuation

A. Pre-ATT
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B. Post-ATT
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NOTE.—Figure 10 compares the distributions of firms’ valuation contributions to the total network, normalized by
their individual valuations, before and after the ATT policy shock. Specifically, we compute the ratio of each firm’s
contribution to the total network valuation relative to its own valuation. We display the top 50 firms ranked by their
average daily active users (DAU) within the sample. Panel A presents the distribution of this ratio prior to the intro-
duction of the ATT policy, and Panel B shows the corresponding distribution after the policy’s implementation.
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FIGURE 11: Risk Contribution under Different Degrees of Network Propagation

A. Risk Contribution, K = 0
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B. Risk Contribution, K = 3
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C. Risk Contribution, K = ∞
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NOTE.—Figure 11 illustrates the distribution of risk contribution at different levels of network propagation. The y-
axis (in logs scale) represents each firm’s contribution to the total risk of the network, with values scaled so that the
maximum is normalized to 1. We display the top 50 firms ranked by their values in Panel A, which represents risk
contribution when K = 0. Panel A shows the distribution when K = 0 (no network propagation). Panel B represents
the case with K = 3 (shocks propagate three times through the network). Panel C corresponds to the case with K =
∞, when all network effects are accounted for.
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FIGURE 12: Aggregate Valuation Variance under Different Degrees of Network Propagation
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NOTE.—Figure 12 illustrates the distribution of aggregate shocks at different levels of network propagation. Specifi-
cally, we introduce standard normal shocks into the model and calculate the resulting aggregate shocks as they propa-

gate through the network. The aggregate shock is calculated as X = 1⊤∑K
k=0

(
β
ρ̂

)k
Γkε̄, where ε̄ is a vector of i.i.d.

normal shocks. The model is simulated 10000 times, and the distribution of aggregate shocks is plotted for different
propagation levels K. The blue curve represents the case when K = 0 (no network propagation), the green curve rep-
resents K = 3 (shocks propagate three times through the network), and the red curve represents K = ∞, where all
possible network effects are accounted for. Kernel density plots are overlaid on the histograms.
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TABLE 1: Summary Statistics

Panel A. Pair-wise variables

mean sd p10 p25 p50 p75 p90 count

Pairwise connections

data connectedness 0.170 0.20 0.00 0.00 0.10 0.29 0.46 1,401,082
mobile user (0/1) 0.036 0.19 0.00 0.00 0.00 0.00 0.00 1,401,082
app category 0.157 0.24 0.00 0.00 0.00 0.27 0.52 1,401,082
product horizontal 0.015 0.03 0.00 0.00 0.00 0.02 0.05 1,401,082
product vertical 0.003 0.00 0.00 0.00 0.00 0.00 0.01 1,401,082
technology 0.014 0.08 0.00 0.00 0.00 0.00 0.00 1,401,082
supply chain (0/1) 0.008 0.09 0.00 0.00 0.00 0.00 0.00 1,401,082
common analyst (0/1) 0.063 0.24 0.00 0.00 0.00 0.00 0.00 1,401,082
geography 0.300 0.43 0.00 0.00 0.00 0.90 0.99 1,401,082

Performance comovement

downloads corr. 0.042 0.51 -0.67 -0.38 0.06 0.47 0.73 1,401,082
DAU corr. 0.073 0.57 -0.73 -0.42 0.11 0.59 0.81 1,395,990
earnings growth corr. 0.002 0.38 -0.49 -0.22 0.00 0.23 0.50 1,372,544
sales/assets corr. 0.095 0.46 -0.56 -0.25 0.12 0.46 0.71 1,223,256

Return comovement

raw return 0.248 0.33 -0.21 0.02 0.27 0.50 0.67 5,720,040
return - CAPM 0.034 0.33 -0.41 -0.21 0.03 0.27 0.47 5,617,442
return - DGTW 0.008 0.33 -0.42 -0.23 0.01 0.24 0.44 4,967,560

Panel B. Firm-level variables

mean sd p10 p25 p50 p75 p90 count

∆ payment SDK 0.008 0.28 0.00 0.00 0.00 0.00 0.00 20,344
∆ security SDK 0.005 0.14 0.00 0.00 0.00 0.00 0.00 20,344
∆ customer support SDK 0.001 0.08 0.00 0.00 0.00 0.00 0.00 20,344
∆ review & feedback SDK 0.002 0.07 0.00 0.00 0.00 0.00 0.00 20,344
L1.payment SDK (peers) 4.391 1.44 2.86 4.40 4.90 5.17 5.34 20,344
L1.security SDK (peers) 4.427 1.45 2.90 4.45 4.95 5.21 5.39 20,344
L1.customer support SDK (peers) 3.846 1.31 2.19 3.75 4.28 4.60 4.81 20,344
L1.review & feedback SDK (peers) 4.129 1.37 2.58 4.10 4.60 4.89 5.06 20,344
L1.payment SDK 2.023 2.06 0.00 0.00 2.00 4.00 5.00 20,344
L1.security SDK 0.827 0.84 0.00 0.00 1.00 1.00 2.00 20,344
L1.customer support SDK 0.139 0.39 0.00 0.00 0.00 0.00 1.00 20,344
L1.review & feedback SDK 0.333 0.54 0.00 0.00 0.00 1.00 1.00 20,344
L1.size 22.875 2.10 20.24 21.39 22.80 24.24 25.73 19,914
L1.long-term debt/assets 0.262 0.23 0.01 0.08 0.22 0.38 0.56 19,732
L1.tangibles/assets 0.203 0.22 0.01 0.04 0.11 0.30 0.57 19,457
L1.cash/assets 0.186 0.19 0.02 0.05 0.12 0.26 0.48 19,904

NOTE.—Table 1 reports the summary statistics on key variables. Panel A lists the all variables constructed at firm-pair level.
For each firm pair, the comovement of app performance and financial performance is calculated separately for the periods be-
fore and after the introduction of ATT (2021Q2); return comovement is calculated as the correlation between their monthly
returns over rolling 12-month windows, relative to the introduction of ATT in April 2021. The data on app performance, fi-
nancial performance, and returns spans from 2014 September to 2023 June. Panel B includes variables constructed at the firm
level, all at quarterly frequency.
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TABLE 2: Comovement in App Performance
downloads DAU

(1) (2) (3) (4)

data connectedness 0.025*** 0.024*** 0.025*** 0.023***
(7.58) (7.31) (6.71) (6.25)

ATT × data connectedness -0.025*** -0.025*** -0.025*** -0.024***
(-6.90) (-6.96) (-6.31) (-6.21)

mobile user (0/1) 0.001 0.023***
(0.86) (7.47)

app category 0.008*** 0.010***
(4.91) (5.69)

product horizontal 0.009*** 0.010***
(4.63) (5.83)

product vertical 0.001 -0.002
(0.36) (-0.96)

supply chain (0/1) -0.000 -0.001
(-0.61) (-1.63)

technology -0.001 0.000
(-1.44) (0.54)

common analyst (0/1) 0.005*** 0.005***
(4.99) (4.11)

geography 0.003 0.002
(1.57) (0.93)

ATT × mobile user (0/1) 0.010*** -0.004
(4.02) (-1.02)

ATT × app category -0.000 -0.003
(-0.04) (-0.97)

ATT × product horizontal -0.001 -0.005*
(-0.31) (-1.92)

ATT × product vertical 0.003 0.011*
(0.72) (1.89)

ATT × supply chain (0/1) 0.000 0.001
(0.22) (0.72)

ATT × technology 0.000 -0.002
(0.40) (-1.33)

ATT × common analyst (0/1) -0.002 -0.001
(-1.41) (-0.82)

ATT × geography 0.002 0.000
(0.78) (0.12)

Firm i#ATT FE Y Y Y Y
Firm j#ATT FE Y Y Y Y

Observations 1,401,082 1,401,082 1,399,426 1,399,426
R-sq 0.066 0.067 0.113 0.114

NOTE.—Table 2 shows the relationship between firm data connectedness and the comovement of
app performance. Each observation represents a firm pair at a specific point in time. For each
firm pair, the comovement of app performance is measured as the correlation between their quar-
terly log(downloads) and log(DAU), calculated separately for the periods before and after the in-
troduction of ATT (2021Q2). The app performance data spans from 2014Q3 to 2023Q2. In even-
numbered columns, we include controls for a comprehensive set of pair-wise firm connections, as
well as interaction terms between these connections and the ATT indicator, which equals one for
periods after 2021Q2. We include firm-by-time fixed effects (θit and ιjt) and double cluster stan-
dard errors by firm-i and firm-j. Time is defined relative to ATT. Standard errors are double clus-
tered by firm i and firm i. t-statistics are reported in parentheses. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.
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TABLE 3: Comovement in Firm Financial Performance
earnings growth sales/assets

(1) (2) (3) (4)

data connectedness 0.002*** 0.002** 0.005*** 0.004***
(2.82) (2.33) (3.64) (2.79)

ATT × data connectedness -0.003*** -0.003*** -0.003** -0.003**
(-3.16) (-2.88) (-2.08) (-2.07)

mobile user (0/1) 0.000 0.000
(0.20) (0.50)

app category 0.002** 0.005***
(2.00) (4.36)

product horizontal 0.005*** 0.016***
(3.98) (9.25)

product vertical 0.002 0.007***
(1.12) (3.37)

supply chain (0/1) -0.000 0.001
(-1.16) (1.08)

technology -0.000 -0.001*
(-0.61) (-1.69)

common analyst (0/1) -0.001 0.005***
(-1.08) (6.64)

geography -0.002*** 0.009***
(-3.98) (4.24)

ATT × mobile user (0/1) 0.000 0.003***
(0.31) (4.74)

ATT × app category -0.002** 0.007***
(-2.05) (3.17)

ATT × product horizontal -0.002 -0.006***
(-1.25) (-2.73)

ATT × product vertical -0.004* 0.001
(-1.80) (0.16)

ATT × supply chain (0/1) 0.000 0.000
(0.21) (0.33)

ATT × technology 0.000 0.001
(0.52) (1.13)

ATT × common analyst (0/1) 0.001 -0.003***
(0.81) (-2.75)

ATT × geography 0.001 -0.005*
(0.70) (-1.73)

Firm i#ATT FE Y Y Y Y
Firm i#ATT FE Y Y Y Y

Observations 1,379,592 1,379,592 1,231,716 1,231,716
R-sq 0.005 0.005 0.184 0.186

NOTE.—Table 3 shows the relationship between firm data connectedness and the comovement of
financial performance. Each observation represents a firm pair at a specific point in time. For each
firm pair, the comovement of financial performance is measured as the correlation between their
quarterly earnings growth and asset turnover (sales/assets), calculated separately for the periods be-
fore and after the introduction of ATT (2021Q2). The data on firm’s financial performance spans
from 2014Q3 to 2023Q2. In even-numbered columns, we include controls for a comprehensive set
of pair-wise firm connections, as well as interaction terms between these connections and the ATT
indicator, which equals one for periods after 2021Q2. We include firm-by-time fixed effects (θit
and ιjt) and double cluster standard errors by firm-i and firm-j. Time is defined relative to ATT.
t-statistics are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%,
and 10% levels, respectively.
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TABLE 4: Comovement in Stock Returns
raw return return-CAPM return-DGTW

(1) (2) (3) (4) (5) (6)

data connectedness 0.004*** 0.002*** 0.005*** 0.003*** 0.003*** 0.002***
(6.34) (3.87) (6.57) (4.56) (6.00) (3.71)

ATT × data connectedness -0.002*** -0.002*** -0.003*** -0.003*** -0.001** -0.002**
(-2.69) (-2.74) (-3.38) (-3.45) (-2.19) (-2.33)

mobile user (0/1) 0.001*** 0.002*** 0.001*
(4.47) (4.18) (1.78)

app category 0.008*** 0.009*** 0.004***
(8.57) (7.87) (5.22)

product horizontal 0.022*** 0.030*** 0.017***
(22.21) (21.48) (19.48)

product vertical 0.002* 0.001 0.007***
(1.70) (0.98) (4.26)

supply chain (0/1) 0.000 0.000 0.000
(0.60) (0.88) (1.32)

technology 0.001*** 0.002*** 0.001
(3.54) (3.98) (1.45)

common analyst (0/1) 0.009*** 0.012*** 0.009***
(17.06) (16.75) (17.31)

geography 0.004*** 0.004*** 0.003***
(4.52) (3.91) (3.70)

ATT × mobile user (0/1) -0.001*** -0.002*** -0.000
(-4.55) (-4.72) (-0.98)

ATT × app category -0.001 -0.002 -0.001
(-0.64) (-1.50) (-1.08)

ATT × product horizontal 0.001 -0.001 -0.001
(0.53) (-0.90) (-1.22)

ATT × product vertical 0.001 0.003 -0.002
(0.63) (1.62) (-1.29)

ATT × supply chain (0/1) 0.000 0.000 0.000
(0.39) (1.06) (1.13)

ATT × technology 0.000 -0.000 0.000
(0.62) (-0.05) (0.27)

ATT × common analyst (0/1) 0.001 0.002* 0.002***
(1.29) (1.87) (2.66)

ATT × geography -0.002 -0.002 0.000
(-1.55) (-1.25) (0.19)

Firm i#Time FE Y Y Y Y Y Y
Firm j#Time FE Y Y Y Y Y Y

Observations 5,720,040 5,720,040 5,617,442 5,617,442 4,967,560 4,967,560
R-sq 0.442 0.450 0.097 0.110 0.022 0.028

NOTE.—Table 4 shows the relationship between firm data connectedness and return comovement. Each observation represents a
firm pair at a specific point in time. For each firm pair, return comovement is calculated as the correlation between their monthly
returns over rolling 12-month windows, relative to the introduction of ATT in April 2021. The return data spans from 2014
September to 2023 June, and we examine three types of returns: raw returns, abnormal returns based on CAPM, and DGTW-
adjusted returns. In even-numbered columns, we include controls for a comprehensive set of firm-pair connections, along with
interaction terms between these connections and the ATT indicator, which equals one for periods after 2021Q2. We include firm-
by-time fixed effects (θit and ιjt) and double cluster standard errors by firm-i and firm-j. Time is defined relative to ATT. Stan-
dard errors are double clustered by firm i and firm i. Standard errors are double clustered by firm i and firm j. t-statistics are
reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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TABLE 5: Model Calibration and Model-Implied Comovements

A. Moments

Data Model
Regression coefficient of

– App performance on data network 0.023 0.038
– Financial performance on data network 0.004 0.003
– Return on data network 0.003 0.005

DID coefficient of

– App performance on data network -0.024 -0.034
– Financial performance on data network -0.003 -0.003
– Return on data network -0.003 -0.004

B. Parameters

Description Source Symbol Value

Strength of network propagation Moments β 0.080
Size of the ATT shock Moments ξ 0.700
Volatility of customer activities Data {σδ,i}Ni=1 —
Data network matrix Data {γij}Ni,j=1 —
Profits per customer Data ζ 18
Data depreciation rate External µ -0.075
Discount rate External ρ 0.030
Proportion of paying customer External κ 1.000

NOTE.—Table 5 presents the calibration of the model. Panel A describes the set of
moments that we target, and panel B presents the calibrated parameters. The tar-
get set of moments, shown in the upper panel, include the regression slopes of co-
movement between APP performance and stock returns on data network linkages,
as well as the corresponding DID estimates that related to APP policy shocks. In
the lower panel, we show the estimated parameters.
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TABLE 6: Firm Choice on Monetization versus User Engagement

Panel A. Payment

∆ payment SDK

(1) (2)

L1.payment SDK (peers) 0.007*** 0.007***
(5.60) (5.25)

ATT × L1.payment SDK (peers) −0.010*** −0.010***
(−3.86) (−3.80)

L1.payment SDK −0.013*** −0.014***
(−5.58) (−5.75)

L1.size 0.006***
(5.48)

L1.long-term debt/assets 0.003
(0.31)

L1.tangibles/assets 0.013
(1.03)

L1.cash/assets 0.033***
(3.05)

Industry#Quarter FE Y Y
Firm controls N Y

Observations 20,344 19,274
R-sq 0.061 0.067

Panel B. User engagement

∆ security SDK ∆ support SDK ∆ review SDK

(1) (2) (3) (4) (5) (6)

L1.security SDK (peers) 0.004*** 0.003***
(6.31) (5.21)

L1.customer support SDK (peers) 0.002*** 0.001***
(4.32) (4.27)

L1.review & feedback SDK (peers) 0.001*** 0.001***
(5.05) (4.13)

ATT × L1.security SDK (peers) −0.003* −0.002
(−1.70) (−1.08)

ATT × L1.customer support SDK (peers) −0.002** −0.002***
(−2.42) (−2.78)

ATT × L1.review & feedback SDK (peers) −0.002*** −0.002***
(−4.33) (−3.80)

L1.security SDK −0.015*** −0.016***
(−7.56) (−7.52)

L1.customer support SDK −0.021*** −0.018***
(−5.40) (−5.40)

L1.review & feedback SDK −0.008*** −0.008***
(−5.79) (−5.73)

Industry#Quarter FE Y Y Y Y Y Y
Firm controls N Y N Y N Y

Observations 20,344 19,274 20,344 19,274 20,344 19,274
R-sq 0.082 0.083 0.061 0.066 0.066 0.065

NOTE.—Table 6 shows cross-firm momentum in the investment in data accumulation. Panel A reports the results on payment SDK and
Panel B on SDKs that are likely to improve user engagment. Standard errors are clustered by firm. t-statistics are reported in parentheses.
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.81



TABLE 7: Product Design Choices: Model vs. Data

Payment Security Support Model

Regression coefficient of

– Change in firm’s SDK on peers choices 0.007 0.004 0.001 0.006

DID coefficient of

– Change in firm’s SDK on peers choices -0.010 -0.003 -0.002 -0.005

NOTE.—Table 7 presents the estimated regression coefficients from both the model and the data. The
regression specification follows . A positive coefficient indicates that herding behavior in firms’ pro-
duction choices is influenced by data connectedness. Additionally, in both the model and the data, this
herding behavior in firms’ product design choices is significantly reduced after the introduction of the
ATT policy. The parameters are estimated as in Table 5.
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TABLE 8: Cyberattack Spillover Effects on App Performance
log(downloads) log(DAU)

(1) (2) (3) (4)

cyber event × high exposure −0.083** −0.068** −0.096*** −0.077**
(−2.93) (−2.31) (−3.45) (−2.76)

cyber event × mobile user −0.162 2.512
(−0.02) (0.31)

cyber event × app category −0.101 −0.160*
(−1.38) (−1.88)

cyber event × product horizontal −0.050 −0.124
(−0.11) (−0.23)

cyber event × product vertical 8.174 8.415
(0.83) (0.68)

cyber event × technology −0.129 −0.154
(−1.49) (−1.47)

cyber event × supply chain (0/1) −0.058 −0.092
(−1.05) (−1.22)

cyber event × common analyst (0/1) 0.010 0.037
(0.23) (0.61)

cyber event × geography −0.012 0.001
(−0.21) (0.01)

Firm controls Y Y Y Y
Firm#Event FE Y Y Y Y
Event-specific relative quarter FE Y Y Y Y

Observations 83,750 83,750 83,750 83,750
R-sq 0.954 0.954 0.955 0.955

NOTE.—Table 8 presents the cross-firm spillover effects of major cyber events using a stacked difference-in-
differences (DiD) specification in 16-month event windows. Major cyber events are defined as those resulting
in the exposure of over 10 million records. A comprehensive list of these events and their summaries can be
found in Appendix Table B.1. For each firm k involved in a major cyber event, we define a peer firm i’s expo-
sure to the event as:

Exposureik =

∑
P ρdata,P

ik DAUP
k∑

P

∑
j ρ

data,P
ij DAUP

j

where j represents any other firm connected to firm i within the data space, and P represents platforms, taking
values from {iOS, Android}. A firm k is considered an important peer if Exposureik > 0.01, corresponding
to the 75th percentile of the exposure distribution. Firms with Exposureik <= 0.01 are considered as con-
trol firms. Each regression includes the following firm-level controls: firm size (log of assets), long-term debt
to assets, and tangible assets to total assets. Additionally, we control for firm×event fixed effects and event-
specific relative quarter fixed effects. Standard errors are double clustered by event and firm. t-statistics are
provided in parentheses. Statistical significance at the 1%, 5%, and 10% levels is denoted by ***, **, and *,
respectively.
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A Functionality SDKs

TABLE A.1: Description of Example Functionality SDKs

SDK Name Category # Installation 1 Introduction

AliPay Payment 23571

The cross-border app payment solution provides a convenient,
safe, and reliable payment services to third-party applications.
This payment solution is applicable to wireless devices
(including mobiles and tablet computers) supported by
Android or iOS system.

Stripe Payment 8435
The Stripe SDK allows you to quickly build a payment flow
in your app. We provide powerful and customizable UI
elements that you can use out-of-the-box to collect your
users’ payment details.

Nimbus Security 35884

The Nimbus SDK handles both requesting the ad and
rendering the impression — all with a lightning-fast
server-to-server connection — making it the easiest way to
integrate with the Nimbus exchange. The SDK is
customizable. You can choose to use the rendering function,
the requesting function, or both.

Okta Security 27663

Okta connects any person with any application on any device.
It’s an enterprise-grade, identity management service, built for
the cloud, but compatible with many on-premises
applications. With Okta, IT can manage any employee’s
access to any application or device.

Zendesk Support Customer Support 4032

The SDK provides the following UIs for both Support and
Guide to embed customer service features in an app: Help
Center Overview - Lets the user access articles in your
Zendesk Guide knowledge base and, optionally, submit a
ticket. See Adding your help center; Help Center Article -
Lets the user view a specific help center article. See Show a
single article; Request - Lets the user view, update, and
submit tickets to your customer service team. See Show a
ticket screen; Request List - Lets the user view a list of their
tickets. See Show the user’s tickets.

Helpshift Customer Support 2278
The Helpshift SDK allows your support team to provide
in-app help in the form of searchable, native FAQs and direct,
two-way messaging to end users.

Appirate Reviews & Feedback 30384
Appirater is a class that you can drop into any iPhone app
(iOS 4.0 or later) that will help remind your users to review
your app on the App Store.

iRate Reviews & Feedback 26894
iRate is a library to help you promote your iPhone and Mac
App Store apps by prompting users to rate the app after using
it for a few days.
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B Major Cyber Events

TABLE B.1: List of Major Cyber Events

Company Name Exposed
Records

Date of
Accident Date of Notice Case Type Case Description

Baidu (China) Co.,
Ltd. 2 billion 13/05/2017 14/05/2017 Data – Malicious

Breach
The DU Caller app, developed by Baidu’s subsidiary, illegally stored
users’ personal data and secretly transferred contacts to its servers,
which were hacked, exposing 2 billion phone numbers.

Marriott Int’l Inc 500 million 08/09/2018 19/11/2018 Data – Malicious
Breach

On 8/9/2018, Marriott discovered an unauthorized attempt to access,
encrypt, and remove data from its Starwood database. By 19/11/2018,
Marriott believed data from up to 500 million guests had been
compromised, including personal details for 327 million guests, with
payment card information exposed for some.

Microsoft
Corporation 250 million 28/12/2019 29/12/2019

Data –
Unintentional
Disclosure

Microsoft exposed call center data for nearly 250 million customers
through several unsecured cloud servers, which was discovered by
security researcher Bob Diachenko after the databases were indexed by
the BinaryEdge search engine. The data spanned 14 years of Microsoft
Customer Service and Support (CSS) records, which contained
customer email and IP addresses, support agent emails, and internal
notes. Microsoft secured the data by December 31, after being alerted
on December 29.

Equifax
Information
Services of Puerto
Rico Inc.

243 million 29/07/2017 12/09/2017
Privacy –
Unauthorized
Contact or
Disclosure

On July 29, 2017, Equifax discovered a breach in its servers that
exposed sensitive personal information, including the names, Social
Security numbers, birth dates, and addresses of Michael W. Tomlin and
Marilyn Tomlin. Equifax created a website for individuals to check if
their data was compromised, with reports suggesting the breach
affected over 100 million people. This incident resulted in Equifax
violating the Fair Credit Reporting Act (FCRA).

Equifax Inc. 243 million 29/07/2017 20/09/2017 Phishing, Spoofing,
Social Engineering

Software engineer Nick Sweeting created a fake version of Equifax’s
breach information site, equifaxsecurity2017.com, highlighting how
easily the site could be impersonated. Several posts from Equifax’s
Twitter account mistakenly directed users to Sweeting’s site, which
received around 200,000 hits before being blacklisted by major
browsers like Chrome, Firefox, and Safari. Equifax later deleted the
incorrect links and apologized for the confusion.

Equifax Inc. 146 million 13/05/2017 30/07/2017 Data – Malicious
Breach

In 2017, Equifax experienced a significant cybersecurity breach caused
by criminals exploiting a vulnerability in the Apache Struts framework
(CVE-2017-5638), affecting U.S., Canadian, and U.K. consumers. The
attack affected occurred from mid-May to July 2017 and compromised
names, Social Security numbers, birth dates, addresses, and in some
cases, driver’s license numbers. Equifax was notified of the
vulnerability in March 2017 but failed to patch it until July 29, after
detecting suspicious network activity. Initially, 145.5 million
Americans were identified as affected, with an additional 2.4 million
U.S. victims later identified whose names and partial driver’s license
information were stolen. Credit card details of 209,000 consumers and
personal dispute documents of 182,000 were also accessed. In
February 2020, U.S. authorities charged four Chinese military officers
for the breach, alleging they sought Equifax’s sensitive consumer data
and trade secrets through the exploited vulnerability.

Capital One
Financial Corp. 106 million 22/03/2019 19/07/2019

IT – Configura-
tion/Implementation
Errors

The breach was discovered on July 17, 2019, when a GitHub user
alerted Capital One about a potential data theft, which the bank
confirmed on July 19. Paige A. Thompson, an employee at a cloud
computing company that provided data services to Capital One, was
arrested for the breach after posting about it on GitHub. She exploited
a misconfigured web application firewall to steal data from Capital
One’s servers. The breach impacted 106 million people, compromising
transaction data, credit scores, payment history, balances, and for
some, linked bank accounts and social security numbers.

Chex Systems Inc 100 million 24/09/2015 21/06/2016
Privacy –
Unauthorized
Contact or
Disclosure

On September 24, 2015, Mission Bank sent Nicholas A. George a
letter refusing to open a deposit account, citing information from a
consumer report obtained from Chex Systems, Inc. (Chex). George
later obtained his ChexSystems report on February 6, 2016,
discovering that the Academy Bank trade line inaccurately reflected
his liability for the account. This incorrect reporting harmed George by
causing embarrassment, inconvenience, and annoyance. Due to its size
and large consumer database, Chex’s actions violated the Fair Credit
Reporting Act (FCRA), harming the hundreds of millions of
consumers for whom it holds banking history data.
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Google LLC 53 million 07/11/2018 10/12/2018
IT – Configura-
tion/Implementation
Errors

On December 10, 2018, Google disclosed a second bug in the Google+
API that potentially exposed the private data of 52.5 million users.
Discovered during internal tests, Google stated there was no evidence
that third parties had exploited the bug. The issue, caused by a
software update, affected Google+ APIs between November 7 and
November 13, 2018, when it was fixed. As a result, Google moved the
shutdown of Google+ for consumers from August 2019 to April 2019.
The bug in the Google+ People API allowed apps to access profile
data, including names, emails, and birthdays, which users had marked
as private. More sensitive information, such as passwords and financial
data, was not affected. Google has since notified impacted users.

T-Mobile US, Inc. 50 million 19/08/2021 07/10/2021 Data – Malicious
Breach

Edward Mendez was a victim from SIM-swapping attacks on August
19 and September 12, 2021, with a loss of nearly $240,000 in
cryptocurrency. The employee who granted the hacker access had
bypassed the ‘text-message notification’ protocol that notifies all other
members under the same account when there is a change to an account.
The hackers also disabled two-factor authentication and accessed
Mendez’s Coinbase account, changing his password and deleting
related emails. The breach exposed sensitive information, including
security numbers, phone numbers, addresses, and driver’s license
details. The Kansas attorney general reported that over 335,000 Kansas
residents could be affected by the T-Mobile data breach.

T-Mobile US Inc 50 million 16/08/2021 18/08/2021 Data – Malicious
Breach

The breach was detected after the attacker reported the incident to
Motherboard. On August 16, T-Mobile confirmed the breach, which
affected 7.8 million current postpaid customers and over 40 million
records of former or prospective customers who applied for credit. The
company claimed that the stolen data included personal information
such as names, birthdates, Social Security numbers, and driver’s
license/ID numbers, but not bank, payment data, or passwords.
Additionally, the names, phone numbers, and account PINs of around
850,000 prepaid users were exposed. T-Mobile quickly shut down the
access point used in the attack. As a consequence, the company is
offering two years of free identity theft protection via McAfee and
advising postpaid customers to change their PINs while also providing
account takeover protection.

T-Mobile Usa, Inc. 50 million 17/08/2021 24/08/2021 Data – Malicious
Breach

On August 17, 2021, T-Mobile discovered that a bad actor had illegally
accessed unencrypted personal information, which included names,
driver’s license numbers, phone numbers, addresses, government
identification numbers, Social Security numbers, dates of birth, and
T-Mobile account PINs.

Chegg Inc 40 million 29/04/2018 19/09/2018 Data – Malicious
Breach

Chegg, Inc., a US-based education technology company, plans to reset
passwords for over 40 million users after discovering a security breach
that dates back to April 29, 2018. The breach was detected on
September 19, 2018, and involved unauthorized access to a company
database containing user data for chegg.com and related brands, such
as EasyBib. Hackers may have accessed user information, including
names, email addresses, shipping addresses, usernames, and hashed
passwords, although Chegg did not specify the hashing algorithm used.
Social Security numbers and financial data were not compromised.
The breach caused Chegg’s stock price to drop by 10 percent.

T-Mobile US Inc 37 million 25/11/2022 05/01/2023 Data – Malicious
Breach

On January 19, 2023, T-Mobile reported a cyberattack that exposed
data from approximately 37 million postpaid and prepaid customer
accounts. The breach was detected on January 5, 2023, when T-Mobile
identified unauthorized data access through a single Application
Programming Interface (API). The API did not expose sensitive
information such as payment card details, Social Security numbers, or
passwords, but did allow access to customer data including names,
billing addresses, emails, phone numbers, birth dates, account
numbers, and plan details.

Taobao 21 million 14/10/2015 04/02/2016 Data – Malicious
Breach

From October 14 to 16, 2015, a group of hackers attempted to access
over 20 million active user accounts on Taobao, Alibaba Group’s
e-commerce platform, using rented space on Alibaba’s AliCloud
services. Of the 99 million accounts involved, 20.59 million had
matching passwords. The hackers aimed to acquire these accounts for
order manipulation and sale to scammers. However, the attack did not
involve a direct breach of Taobao. Instead, hackers used account
information from non-Taobao platforms to find matching credentials.
The hack was stopped a month later by Chinese authorities after
website admins detected suspicious activity on the platform.

Morgan Stanley 14 million 21/02/2020 10/07/2020 Data – Malicious
Breach

In 2019, Morgan Stanley replaced certain computer servers in local
branch offices that stored information on encrypted disks, which may
have contained personal data. During an inventory, Morgan Stanley
was unable to locate these encrypted disks, leading to a data breach.
The incident, which occurred on February 21, 2020, compromised
personally identifiable information, including Social Security numbers,
affecting 14,256,250 individuals.
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Twitter Inc 13 million 07/02/2020 07/02/2020 Data – Malicious
Breach

On February 7, 2020, the official Facebook Twitter account was briefly
taken over by the hacking group OurMine. The incident lasted less
than 30 minutes, during which a tweet was sent to Facebook’s 13.4
million followers, stating: “Hi, we are OurMine. Well, even Facebook
is hackable but at least their security better than Twitter,” and offering
“security services” to improve account protection. The breach was not
a result of compromised Facebook or Twitter systems, but rather due to
a third-party marketing platform used to manage social media. A
Twitter spokesperson confirmed the issue, stating the compromised
accounts were quickly locked. Facebook later confirmed in a tweet that
the issue had been resolved and access restored.

Blackbaud Inc 13 million 07/02/2020 01/05/2020 Data – Malicious
Breach

In May 2020, Blackbaud, Inc. was targeted in a sophisticated
ransomware attack. The breach, which began on February 7, 2020, and
lasted intermittently until May 20, 2020, compromised backup files for
clients using Blackbaud’s Raiser’s Edge/NXT system. While the
hackers did not access encrypted credit card information, bank account
details, Social Security numbers, or login credentials, they did obtain
contact information, demographic data, and donation histories.
Blackbaud paid an undisclosed ransom after evidence showed the
stolen data was destroyed, and it is believed the compromised data was
not misused or publicly shared. However, further investigation
revealed that more unencrypted data, including bank account
information and Social Security numbers, may have been accessed. As
of September 2020, the Identity Theft Resource Center reported that
536 organizations and nearly 13 million people were impacted.

Quest Diagnostics
Inc 12 million 01/08/2018 14/05/2019 Data – Malicious

Breach

On June 3, 2019, Quest Diagnostics revealed that a data breach
potentially exposed the personal, financial, and medical information of
approximately 11.9 million patients. The breach occurred through a
billing collections vendor, American Medical Collection Agency
(AMCA), which provides services to Optum360, a Quest contractor.
An unauthorized user had access to AMCA’s system from August 1,
2018, to March 30, 2019. The compromised data included credit card
numbers, bank account information, medical details, and Social
Security numbers, though lab results were not exposed. As of May 31,
2019, AMCA estimated that 11.9 million Quest patients were affected.
AMCA has yet to provide full details about the breach, and Quest has
been unable to verify all of the information.

MGM Resorts
International 11 million 07/07/2019 21/02/2020 Data – Malicious

Breach

On or around July 7, 2019, an unauthorized individual accessed MGM
Resorts International’s computer network and stole customer data,
which included personal information such as names, addresses,
driver’s license and passport numbers, military IDs, phone numbers,
emails, and dates of birth. A subset of this data was initially shared on
a closed internet forum but was later fully exposed on a hacking forum
in February 2020, affecting over 10.6 million MGM guests. This
breach left customers vulnerable to phishing attacks and
SIM-swapping schemes. Despite the breach occurring seven months
prior, MGM did not publicly disclose it until September 5, 2019, when
it notified affected customers and government agencies, due to a belief
that the data wouldn’t be misused.

Laboratory Corp of
America Holdings 10 million 01/08/2018 14/05/2019 Data – Malicious

Breach

On May 14, 2019, Laboratory Corporation of America Holdings
(LabCorp) was notified by its vendor, Retrieval-Masters Creditors
Bureau, Inc., operating as American Medical Collection Agency
(AMCA), of unauthorized activity on AMCA’s web payment page.
The breach occurred between August 1, 2018, and March 30, 2019.
LabCorp immediately ceased sending collection requests to AMCA
and halted pending requests. AMCA, which serves as an external
collection agency for LabCorp and other healthcare companies, stored
data for approximately 7.7 million LabCorp consumers. The
compromised data included personal information such as names,
addresses, dates of birth, and payment details (credit card or bank
account information). No laboratory results, test orders, Social
Security numbers, or insurance details were exposed. The breach
impacted a total of 10,241,756 consumers.

Chipotle Mexican
Grill Inc 10 million 24/03/2017 25/04/2017 Data – Malicious

Breach

On April 25, 2017, Chipotle disclosed a data breach caused by credit
card-stealing malware that infected the payment processing system in
most of its 2,250 restaurants. The malware collected cardholder
information, including names, card numbers, expiration dates, and
verification codes, during transactions between March 24 and April 18,
2017. Chipotle has since removed the malware. The breach affected
tens of millions of customers, including 1,798 New Jersey residents.
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C Model Derivation and Proofs

C.1 Customer optimization
Consider a consumer in a data economy, whose problem is to maximize their utility from con-
suming firm’s product. The utility function is quasi-linear, reflecting diminishing marginal utility
from consumption of the good, while the cost of consumption is linear in the quantity consumed.
Specifically,

U = max
q

ζ log(q)− pq, (C.1)

where q is the quantity of the good consumed, p is the price per unit of good. ζ is a positive
constant reflecting the consumer’s preference for consuming the good. Taking FOC and solving
for optimal quantity:

q =
ζ

p
(C.2)

The optimal expenditure per customer is

pq = ζ (C.3)

Therefore, a firm that has a paying customer base of δ can generate profits ζδ.

C.2 Proof of Lemma 1
Given that the profits function is defined as

Fi,t = max
ei,t

ζωm
i,t(ei,t)− C(Di,t, xi,t)ei,t, (C.4)

FOC with respect to ei,t yields

ζω′(emi,t) = C(Di,t, xi,t), (C.5)

where em denotes the optimal level of e. Note that ω is an increasing and concave function in e
with w′′(e) < 0, and that CD < 0, Cx > 0. Therefore, differentiating both sides of (C.5) with
respect to Di,t, we have

ζω′′(e)
∂emi,t
∂Di,t

= CD(Di,t, xi,t). (C.6)
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That is,

∂emi,t
∂Di,t

=
CD(Di,t, xi,t)

ζω′′(e)
> 0 (C.7)

Similarly, differentiating both sides of (C.5) with respect to xi,t, we have

ζω′′(e)
∂emi,t
∂xi,t

= Cx(Di,t, xi,t) (C.8)

That is,

∂emi,t
∂xi,t

=
Cx(Di,t, xi,t)

ζω′′(e)
< 0 (C.9)

This also implies that

∂ωm
i,t

∂Di,t

> 0,
∂ωm

i,t

∂xi,t

< 0. (C.10)

And the associated profits

Fi,t = ζωm
i,t(e

m
i,t)− C(Di,t, xi,t)e

m
i,t. (C.11)

Taking derivative, using the envelop theorem

∂Fi,t

∂xi,t

= −∂C(Di,t, xi,t)

∂xi,t

emi,t < 0, (C.12)

and

∂Fi,t

∂Di,t

= −∂C(Di,t, xi,t)

∂Di,t

emi,t > 0. (C.13)

Since we have CxD < 0, the cross-derivative of Fi,t with respect to xi,t and Di,t satisfies

∂2Fi,t

∂Di,txi,t

= −∂2C(Di,t, xi,t)

∂Di,t∂xi,t

emi,t > 0. (C.14)
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C.3 Proof of Proposition 1
Note that the optimal choice of xi,t is characterizied by the HJB equation,

ρV i (δi,t, {δj,t}j ̸=i) = max
xi,t

ζκδi,t + F (Di,t, xi,t) + V i
δi,t

[θ(αDi,t + xi,t) + µδδi,t] +
1

2
V i
δi,tδi,t

δ2i,tσ
2
i,δ

+
∑
j ̸=i

[
V i
δj,t

[θ(αDj,t + xj,t) + µj,δδj,t] +
1

2
V i
δj,tδj,t

δ2j,tσ
2
j,δ

]
. (C.15)

Taking FOC with respect to xi,t, we have

−Fx(Di,t, xi,t) = Vδi,tθ (C.16)

C.4 Proof of Propositions 2
For firm’s cash flow from user activities, we have

Fi,t = ζ log(ei,t)−
ei,t

ϕ0Di,t − ϕ1xi,t

(C.17)

Taking FOC with respect to ei,t, we obtain

ei,t = ζ(ϕ0Di,t − ϕ1xi,t) (C.18)

substituting back, firm’s profits from user activities are

F (δi,t, {δj,t}) = ζ log (ϕ0Di,t − ϕ1xi,t) + ζ log ζ − ζ (C.19)

where

Di,t =
N∑
j=1

γijδj,t. (C.20)

Value function conjecture. To solve for firm’s valuation, we conjecture that the firm’s value
function has the following functional form:

V (δi,t, {δj,t}) = vi,0 + v⊤i δ̄t = vi,0 +
N∑
j=1

vi,jδj,t (C.21)
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where δ̄t is the column vector of all firms’ data stock, δ̄t = [δ1,t, ..., δN,t]
⊤. Therefore, we obtain

the following expressions for firm i’s dependency on firm j’s data ∀j = 1, 2, ...N :

Vδj,t (δi,t, {δj,t}) = vi,j,

Vδj,tδj,t (δi,t, {δj,t}) = 0,

we substitute these into the HJB equation to obtain:

ρV (δi,t, {δj,t}) dt =max
xi,t

(F (δi,t, {δj,t}) + ζκδi,t)dt+ vi,i (θ(xi,t + αDi,t) + µδδi,t) dt

+ vi,j

N∑
j ̸=i

[θ(xj,t + αDj,t) + µδδj,t] dt . (C.22)

FOC (10) becomes

ζϕ1

(ϕ0Di,t − ϕ1xi,t)
= θvi,i. (C.23)

If vi,i > 0, this ensures that ϕ0Di,t − ϕ1xi,t > 0 and also gives

xi,t =
ϕ0

ϕ1

Di,t −
ζ

θvi,i
. (C.24)

That is

xi,t =
ϕ0

ϕ1

Di,t −
ζ

θvi,i
=

ϕ0

ϕ1

(
N∑
j=1

γijδj,t)−
ζ

θvi,i
(C.25)

Also, we have

ei,t =
ζ2ϕ1

θvi,i
> 0 (C.26)

The cash flow from user activities is given by

Fi,t = ζ log(
ζϕ1

θvi,i
) + ζ log ζ − ζ (C.27)
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Substitute FOC into HJB

ρV = ζκδi,t + ζ log(
ζϕ1

θvi,i
) + ζ log ζ − ζ +

N∑
j=1

vi,j [θxj,t + αθDj,t + µδδj,t]

= ζκδi,t + ζ log(
ζϕ1

θvi,i
) + ζ log ζ − ζ +

N∑
j=1

vi,j

(
θ
ϕ0

ϕ1

Dj,t −
ζ

vj,j
+ αθDj,t + µδδj,t

)
(C.28)

where

Dj,t =

(
N∑
k=1

γjkδk,t

)
(C.29)

After substitution and simplification:

ρVi,t =

(
ζκδi,t +

N∑
j=1

vi,j

[
θ(
ϕ0

ϕ1

+ α)

(
N∑
k=1

γjkδk,t

)
+ µδδj,t

])
+ Ai (C.30)

where

Ai =

(
ζ log(

ζϕ1

θvi,i
) + ζ log ζ − ζ +

N∑
j=1

vi,j

[
− ζ

vj,j

])
(C.31)

This gives the constant term in the valuation

vi,0 =
Ai

ρ
. (C.32)

There are two components in it. The first is the discounted value of all future cash flow from user
activities. The second component is the present value of the change in data accumulation resulting
from optimal product design.

Next, by comparing coefficients on LHS and RHS of N states δj,t, we have N equations for
N unknown vi,j, ∀j = 1, 2, ..., N . The valuation vector is

vi =


vi,1
vi,2

...
vi,N


Γ is an N ×N matrix of network linkages
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Γ =


γ11 γ12 γ13 · · · γ1N
γ21 γ22 γ23 · · · γ2N
γ31 γ32 γ33 · · · γ3N

...
...

... . . . ...
γN1 γN2 γN3 · · · γNN


For (C.30), the coefficients on δi should be the same on both sides, therefore we have for vi,i:

ρvi,i = ζκ+ θ(
ϕ0

ϕ1

+ α)

(
N∑
j=1

γjivi,j

)
+ µδvi,i

and for the coefficient of δj,t for j ̸= i we have

ρvi,j = θ(
ϕ0

ϕ1

+ α)

(
N∑
k=1

γkjvi,k

)
+ µδvi,j

Define:
β = θ(

ϕ0

ϕ1

+ α)

The above equations can be written as

(ρ− µδ)vi,i = ζκ+ β(Γ⊤vi)i (C.33)

and
(ρ− µδ)vi,j = β(Γ⊤vi)j

Let’s define
ρ̂ = ρ− µδ

Rearranging the above equations in a matrix form, we get:

(Iρ̂− βΓ⊤)vi = ζκei

Solve for the valuation vector vi, we obtain

vi = (Iρ̂− βΓ⊤)−1ζκei (C.34)
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Therefore, the valuation vector is given by

vi = (Iρ̂− βΓ⊤)−1ζκei

v⊤i = e⊤i (I −
β

ρ̂
Γ)−1 ζκ

ρ̂

=
ζκ

ρ̂
e⊤i

(
I +

β

ρ̂
Γ + (

β

ρ̂
)2Γ2 + (

β

ρ̂
)3Γ3 + ...

)
.

And all elements of the vector are positive. Therefore, the firm’s valuation is

Vi,t = vi,0 +
ζκ

ρ̂
e⊤i

(
I +

β

ρ̂
Γ + (

β

ρ̂
)2Γ2 + (

β

ρ̂
)3Γ3 + ...

)
δ̄t (C.35)

= vi,0 + ηδi + ηe⊤i
β

ρ̂
(I +

β

ρ̂
Γ + (

β

ρ
)2Γ2 + ...)Γδ̄t (C.36)

= vi,0 + ηδi + ηe⊤i
β

ρ̂
(I − β

ρ̂
Γ)−1Dt (C.37)

where the constant η is defined as

η =
ζκ

ρ̂
(C.38)

C.5 Proof of Corollary 1
Define Ri,t as the undiscounted cumulative return of firm i. We have

dRi,t = v⊤i
dδ̄t
Vi,t

= e⊤i (I −
β

ρ̂
Γ)−1 ζκ

ρ̂

dδ̄t
Vi,t

= e⊤i

∞∑
k=0

(
β

ρ̂
Γ

)k
ζκ

ρ̂

dδ̄t
Vi,t

=
ζκ

ρ̂

N∑
j=1

e⊤i

∞∑
k=0

(
β

ρ̂
Γ

)k

ej
dδj,t
Vi,t

(C.39)

Note that the following operation takes the i, j element of the matrix Γ

e⊤i (Γ) ej = γij (C.40)
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The comovement between two firms can be expressed as

corr(dRi,t, dRj,t) = corr

(
N∑

n=1

e⊤i

∞∑
k=0

(
β

ρ̂
Γ

)k

en
dδn,t
Vi,t

,
N∑

m=1

e⊤j

∞∑
k=0

(
β

ρ̂
Γ

)k

em
dδm,t

Vj,t

)
(C.41)

That is, we can express each firm’s return as a linear combination of different random variables.
First, note that e⊤i Γej = γij . This implies that the term in the equation (C.41) with n =

j, m = j increases with γij . Moreover, the sensitivity to γij grows as the network strength β
increases. Second, observe that

∑
l ̸=j γil = 1− γij , which decreases as γij increases. This implies

that the comovement of all other pairs n,m diminishes with rising γij . Finally, note that other pair
comovement is on average smaller than the correlation with n = j and m = j. As a result, the total
correlation between the two firms increases with γij , and this sensitivity further intensifies with β.

C.6 Proof of Proposition 3
For firm i, substituting the functional form of its valuation (C.21) into the HJB equation, then
taking the FOC with respect to xi,t, we get

xi,t =
ϕ0

ϕ1

Di,t −
ζ

θvi,i
(C.42)

Where vi,i is the i-th element of vector vi. ϕ0 > 0, ϕ1 > 0, so xi,t is increasing with Di,t. And vi is
solved from (C.34). Recall that the law of motion of data capital is given by

dδi,t = (θxj,t + αθDj,t + µi,tδi,t) dt+ σi,δδi,tdzi,t (C.43)

Consequently, taking the difference of firm product design choice xi,t, we obtain

dxi,t =
ϕ0

ϕ1

[
N∑
j=1

γij ((θxj,t + αθDj,t + µj,δδj,t)dt+ σj,δδj,tdzj,δ,t)

]
(C.44)

C.7 Proof of Proposition 4
Recall that in C.4 we show the firm’s valuation takes the following form

Vi,t = vi,0 + v⊤i δ̄t (C.45)

Therefore, the firm i’s sensitivity to other firms data is given by

(
∂Vi,t

∂δ̄
)⊤ = vi (C.46)
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The j-th entry of this vector is given by

vi,j = e⊤i

(
I+

β

ρ̂
Γ + (

β

ρ̂
)2Γ2 + (

β

ρ̂
)3Γ3 + ...

)
ej (C.47)

Since all the entry of Γ is positive, and β = θ(ϕ0

ϕ1
+ α) is increasing in θ, all the entry of vi are

increasing in θ.

C.8 Proof of Proposition 5
Note that the valuation of firm i is given by

Vi,t = vi,0 + ηδi,t + η
β

ρ̂
e⊤i

∞∑
k=0

(
β

ρ̂
Γ

)k

(Dt) (C.48)

We can rewrite it as

Vi,t = vi,0 + ηδi,t + η
β

ρ̂
e⊤i

(
I+

β

ρ̂
Γ + (

β

ρ̂
)2Γ2 + ...

)
Γδ̄t (C.49)

= vi,0 + ηe⊤i,tIδ̄t + η
β

ρ̂
e⊤i

(
Γ +

β

ρ̂
Γ2 + (

β

ρ̂
)2Γ3 + ...

)
δ̄t (C.50)

= vi,0 + ηe⊤i

(
I+

β

ρ̂
Γ + (

β

ρ̂
)2Γ2 + (

β

ρ̂
)3Γ3 + ...

)
δ̄t (C.51)

= vi,0 + ζκe⊤i (ρ̂I− βΓ)−1δ̄t (C.52)

13


